por 13run0 » Qui Mai 27, 2010 17:54
Se f(x+1)=

, (x

-

), então o domínio da função f(x) é o conjunto formado pelos números reais
x tais que:
Resposta: x


ele dá a função f(x+1). . . mas como eu encontro a função f(x) ??
-
13run0
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qui Mai 27, 2010 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Edificações
- Andamento: formado
por Neperiano » Qui Mai 27, 2010 18:35
Ola
Substitua o x por -1/2 depois de resolvido, diminua 1
Acredito ser isso
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por 13run0 » Qui Mai 27, 2010 23:54
Maligno, valeu por tentar me ajudar. . .
mas eu não consegui resolver a questão. . .
se vcou outra pessoa puder mostrar a resolução eu agradeço. . .
-
13run0
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qui Mai 27, 2010 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Edificações
- Andamento: formado
por Molina » Sex Mai 28, 2010 01:25
Boa noite.
Como

temos que:


Agora você tem

. O que eu fiz foi subtrair 1 de x, para chegar em

Como subtrai 1 no argumento, subtrai 1 também na lei de formação, e chegamos nesta resposta a cima.
Agora é só fazer o denominador diferente de 0 e achar a resposta de x.
Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por 13run0 » Sex Mai 28, 2010 14:15
Valeu mesmo Molina!
ótima explicação. . .
me ajudou bastante!!
-
13run0
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qui Mai 27, 2010 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Edificações
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Quadrática MACK
por Julio_Cesar » Qua Jul 13, 2011 14:18
- 1 Respostas
- 1115 Exibições
- Última mensagem por LuizAquino

Seg Jul 25, 2011 15:52
Funções
-
- (MACK) Em [0, 2?], se...
por manuoliveira » Ter Jun 01, 2010 21:02
- 2 Respostas
- 2613 Exibições
- Última mensagem por Mathmatematica

Dom Jun 06, 2010 21:22
Binômio de Newton
-
- Mack-SP
por -Sarah- » Sáb Fev 23, 2013 18:56
- 4 Respostas
- 2818 Exibições
- Última mensagem por -Sarah-

Ter Fev 26, 2013 20:20
Funções
-
- mack
por fna » Qua Jun 12, 2013 08:53
- 0 Respostas
- 888 Exibições
- Última mensagem por fna

Qua Jun 12, 2013 08:53
Geometria Plana
-
- (Mack 98) Circunferência
por rafaelcb » Qui Set 30, 2010 13:05
- 2 Respostas
- 4689 Exibições
- Última mensagem por rafaelcb

Sex Out 01, 2010 03:17
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.