• Anúncio Global
    Respostas
    Exibições
    Última mensagem

isolamento de função lagrangeana

isolamento de função lagrangeana

Mensagempor jmario » Qui Mai 13, 2010 08:41

Eu tenho a seguinte restrição orçamentária

xp+yq=m

Logo:

\frac{{\alpha.x}^{\alpha-1} {y}^{1-\alpha}}{p}\right = \frac{{\((1-\alpha)} {x}^{a}{y}^{-\alpha}}{q}\right

Dessa igualdade, eu tenho esse resultado e não sei como se chegou nele
\Rightarrow qy=\frac{1-\alpha}{\alpha}px

Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: isolamento de função lagrangeana

Mensagempor MarceloFantini » Qui Mai 13, 2010 20:50

Não sei o que essa equação significa, mas como chegar no resultado é simples. Multiplicando os dois lados por y^{\alpha}, tem-se:

\frac { \alpha x^{ \alpha -1} y } {p} = \frac { (1- \alpha) x^{\alpha} } {q}

Multiplicando os dois lados por x^ {1 - \alpha}:

\frac {\alpha y} {p} = \frac { (1 - \alpha) x } {q}

Finalmente, multiplicando os dois lados por \frac {pq} {\alpha}:

qy = \frac { (1 - \alpha)px } { \alpha }

Qualquer dúvida comente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: isolamento de função lagrangeana

Mensagempor jmario » Sex Mai 14, 2010 09:06

Muito obrigado.
Eu entendi.
Só gostaria de saber como eu vou escolher o {y}^{\alpha} e depois o {x}^{1-\alpha} e finalmente \frac{pq}{\alpha} para fazer as multiplicações.
Caso apareça outras equações dessas para resolver, qual o critério que eu uso para multiplicar dos dois lados?

E mais uma vez obrigado
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: isolamento de função lagrangeana

Mensagempor MarceloFantini » Sáb Mai 15, 2010 15:47

Se o problema queria que você isolasse o qy, então é como se você jogasse tudo de y pra um lado e tudo de x pro outro e trabalhasse com as potências (foi o que eu fiz). É que "jogar pra um lado" é na verdade multiplicar os dois por uma mesma coisa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: isolamento de função lagrangeana

Mensagempor jmario » Seg Mai 17, 2010 08:44

E agora eu tenho esse novo isolamento que eu não sei como fazer

\lambda=\frac{\alpha\left(\frac{\alpha.m}{p} \right)^{\alpha-1}\left[\left(1-\alpha \right).\frac{m}{q} \right]^{1-\alpha}}{p}

Como eu faço para chegar nesse resultado
\lambda=\left(\frac{\alpha}{p} \right)^{\alpha}\left(\frac{1-\alpha}{q} \right)^{1-\alpha}

Me ajude mais uma vez.
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: isolamento de função lagrangeana

Mensagempor MarceloFantini » Seg Mai 17, 2010 18:49

José Mario, por favor crie um novo tópico para essa nova questão, assim evitamos amontoar várias dúvidas em um mesmo lugar, facilitado a localização de todas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: isolamento de função lagrangeana

Mensagempor jmario » Ter Mai 18, 2010 18:12

{\alpha.x}^{-1}yq = p\left(1-\alpha \right)
Por que o {x}^{-1} passa para o outro lado só como x e perde o -1
qy=\left(\frac{1-\alpha}{\alpha} \right)px
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: isolamento de função lagrangeana

Mensagempor MarceloFantini » Ter Mai 18, 2010 19:33

x^{-1} = \frac {1}{x}. Se você dividir alguma coisa (um y qualquer, por exemplo) por \frac {1}{x} dá: \frac {y}{x^{-1}} = \frac {y} { \frac {1}{x} } = yx.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?