• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida em derivadas 2

Duvida em derivadas 2

Mensagempor igones » Sex Dez 04, 2009 20:23

Sejam f(x) e g(x) 2 funções derivaveis em A, com f(x) > 0 para todo x E A.
- Mostre que [f(x)^g(x)]' = f(x)^g(x).[g(x)ln(f(x))]' ((ali é f(x)^g(x) , o x fica embaixo...=/))

- Utilizando o resultado acima determine \frac{dy}{dx}, onde y = x^x

Não to conseguindo chegar a resposta certa nessa 2 questão, =/
igones
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 04, 2009 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: Duvida em derivadas 2

Mensagempor Lucio Carvalho » Sáb Dez 05, 2009 18:33

Olá igones,
Apresento em anexo uma ajuda para a tua questão.
Espero que compreendas!
Anexos
derivada.jpg
derivada
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Duvida em derivadas 2

Mensagempor igones » Dom Dez 06, 2009 01:10

Não entendi direito, se puder explicar..
Só da pra fazer deduzindo desse jeito!?
Ou da pra fazer de outro jeito?

Obrigado!!
Tenho mais essa questão se puder resolver, é sobre regra da cadeia:
Derive: Y= Sen(sqrt x) //Minha dúvida é quem ta dentro de quem?!

Abraços e obrigado denovo!
:)
igones
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 04, 2009 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: Duvida em derivadas 2

Mensagempor Lucio Carvalho » Dom Dez 06, 2009 07:49

Olá igones,
Quanto à tua segunda questão devemos lembrar que: (sen u)' = u'.cos u

No nosso caso, u=\sqrt[]{x}

Assim,

{[sen(\sqrt[]{x})]}^{\prime}={(\sqrt[]{x})}^{\prime}.cos(\sqrt[]{x})

{[sen(\sqrt[]{x})]}^{\prime}=\frac{1}{2.\sqrt[]{x}}.cos(\sqrt[]{x})

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: