por Jaqueline Pimenta » Qui Out 01, 2009 11:50
Bom dia,
Estou com dificuldades em um exercicio de fatoração, que por várias tentativas não consegui desenvolver! Ajudem-me, por favor!
Ex: Se x e y são números reais tais que x.y

0 e |x|

|y|, a expressão

é equivalente a:
Tentativas:
1° - Fatorar o numerador

como Diferença de quadrados, tranformando primeiro, o indice -8 em -4.2 resultando em

. Em seguida cortei no numerador e no denominador a expressão

, que resultou em

. E a partir dai, não sei o que fazer, por ser uma subtração sobre uma multiplicação. E mesmo que eu faça outra fatoração como diferença de quadrados no numerador que ainda é possível, não sairia disso!
2°- Desenvolver a multiplicação no denominador, para conseguir um fator comum ou até mesmo cancelar com o numerador. Mas não houve sucesso algum.
Dúvida: Gostaria de saber o que as informações x.y

0 e |x|

|y|, aprensentadas no enunciado do exercicio, me acrescentam.
Desde já agradeço e parabenizo o site, acredito que será de boa importancia para os estudos.
Jaque Pimenta
-
Jaqueline Pimenta
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Set 30, 2009 11:44
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando
- Andamento: formado
por Elcioschin » Qui Out 01, 2009 17:59
Pimenta
Você tem a resposta ou as alternativas?
Sugestão para continuar
No numerador ----> x^-4 - y^-4 = (x^-2 + y^-2)*(x^-2 - y^-2) = (x^-2 + y^-2)*(1/x² - 1/y²) = (x^-2 + y^-2)*(y² - x²)/x²y²
No denominador ----> 1/x²y²
Ao dividir desaparece 1/x²y² e sobra ----> (x^-2 + y^-2)*(y² - x²) = (1/x² + 1/y²)*(y + x)*(y - x) = (y² + x²)*(y + x)*(y - x)*x²y²
Como você não postou a solução nem as alternativas, não sei se esta é a resposta final.
Quanto às tuas dúvidas sobre x, y diferentes de zero e |x! diferente de |y|:
Se x= o ou y = 0 ou x = - y ----> anula o denominador, o que não é permitido (divisão por zero).
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Jaqueline Pimenta » Qui Out 01, 2009 21:40
Oi Elcioschin

Agradeço por responder!
Já tinha chegado a está resolução, mas não é a resposta.
De acordo com o livro seria

ou sem fatorar

Eita, que adoro matemática. Mas este exercicio está me encabulando kkkk
Pretendo fazer Engenharia tbm!

-
Jaqueline Pimenta
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Set 30, 2009 11:44
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando
- Andamento: formado
por Elcioschin » Dom Out 04, 2009 21:02
Jaqueline
Vamos fazer desde o início, transformando os expoentes negativos em positivos, para facilitar:
V = (x^-8 - y^-8)/[(x*y)^-2](x^-4 + y^-4) -----> V = (1/x^8 - 1/y^8)/(1/x²*y²)*(1/x^4 + 1/y^4)
V = [(y^8 - x^8)/(x^8*y^8)]/(1/x²*y²)*[(y^4 + x^4)/^(y^4*x^4)]
Simplificando x^8*y^8 com x²*y² e com x^4*y^4 sobra:
V = (y^8 - x^8)/(x²*y²)*(y^4 + x^4) -----> Fatorando (y^8 - x^8):
V = (y^4 + x^4)*(y^4 - x^4)/(x²y²)*(y^4 + x^4) -----> V = (y^4 - x^4)/x²*y² ----> Expressão equivalente a sua, com expoentes positivos
V = y^4/x²*y² - x^4/x²*y² -----> V = y²/x² - x²/y² -----> Fatorando ----> V = (y/x - x/y)*(y/x + x/y) ----> Resposta do livro
Não concordo, contudo, com a última expressão da resposta " ou sem fatorar (y/x - x/y)² "
Este resultado NÃO é igual à primeira resposta correta do livro ----> (y/x - x/y)² = y²/x² + x²/y² - 2 ----> Compare com a resposta certa!!!!
Para estar certa deveria ser (y/x)² - (x/y)² = y²/x² - x²/y² = (y/x - x/y)*(y/x + x/y)
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Jaqueline Pimenta » Seg Out 05, 2009 12:05
Oi Elcioschin!
Agradeço pela resolução!!!
Finalmente aprendi!!!
Depois de um ano sem estudar, perdi o jeito da coisa!! kk
As regras gerais sei de cor!
Porém não desenvolvo e complico com o mais básico; Adição, subtração, multiplicação e divisão, sinais e pequenos detalhes como o erro na ultima resposta que enviei.
Se tiver mais dicas, serão de bom agrado!!!
Grata,
Jaqueline
-
Jaqueline Pimenta
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Set 30, 2009 11:44
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [fatoração] fatoração de polinômio do quarto grau.
por +Danilo2 » Qui Set 29, 2016 10:43
- 5 Respostas
- 8637 Exibições
- Última mensagem por +Danilo2

Sáb Out 08, 2016 18:17
Polinômios
-
- fatoração de Polinômio fatoração de agrupamento
por Estudante13 » Sex Nov 09, 2012 22:52
- 1 Respostas
- 3118 Exibições
- Última mensagem por Cleyson007

Sex Nov 09, 2012 23:06
Álgebra Elementar
-
- [fatoração] Exercício de Fatoração
por Cleyson007 » Qua Abr 30, 2008 00:39
- 3 Respostas
- 8712 Exibições
- Última mensagem por admin

Qua Abr 30, 2008 02:15
Álgebra Elementar
-
- Fatoração
por Rogerioeetc » Sex Jul 24, 2009 02:00
- 2 Respostas
- 2451 Exibições
- Última mensagem por Rogerioeetc

Dom Jul 26, 2009 14:26
Álgebra Elementar
-
- fatoração
por jose henrique » Ter Out 26, 2010 23:17
- 2 Respostas
- 1326 Exibições
- Última mensagem por jose henrique

Qua Out 27, 2010 07:29
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.