• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL DEF.] Dúvida(s)

[INTEGRAL DEF.] Dúvida(s)

Mensagempor fabriel » Sáb Jan 05, 2013 21:42

Oi pessoal preciso calcular essa integral:
\frac{d\left(\int_{-8}^{x}\frac{1-t}{1-{t}^{3}}dt \right)}{dx}
Entretanto estou com duvida na hora de achar a primitiva.
eu não consigo fazer uma substituição valida mesmo quebrando ela em duas..
Como vou integrar e depois derivar, então vou chegar no mesmo resultdo, então o resultado seria:
\frac{1-t}{1-{t}^{3}}
e eu avaliaria nos pontos -8 e x

Mas ai eu teria que primeiro passar pelo x não é?
Como será essa resolução? esse tipo de exercício tem haver com algum teorema ou alguma técnica de integração??
obrigado
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor e8group » Sáb Jan 05, 2013 23:02

Suponhamos que ,

\int_{-8}^{x}  f'(t)  dt =  F(x)  - F(-8) .

Temos então,

\frac{d}{dx} \int_{-8}^{x}  f'(t)  dt  = \frac{d}{dx}F(-8) - \frac{d}{dx}F(x) .

Como F(-8) nos fornecerá um número real sua derivada é nula .Logo,

\frac{d}{dx} \int_{-8}^{x}  f'(t)  dt = f'(x)  =  \frac{1-x}{1-x^3}ou f'(x) = \frac{1}{x^2 - x +1}


.Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor fabriel » Dom Jan 06, 2013 00:02

humm obrigado
Eu só não entendi essa parte: f'(x) = \frac{1}{x^2 - x +1}
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor e8group » Dom Jan 06, 2013 00:49

Boa noite , basta fazer a divisão de 1 - x^3 = - (x^3 - 1) por x- 1 . Assim , - (x^3 - 1) =   -(x-1)[x^2 + x + 1 ]  =  (1-x)[x^2 + x + 1 ] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor fabriel » Dom Jan 06, 2013 12:15

hummm entendi então foi um Artificio Algébrico.. Então podemos concluir que a solução é:
f'(x) = \frac{1}{x^2 - x +1}
não é mesmo??
obrigado!!
Um abraço!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor e8group » Dom Jan 06, 2013 12:46

Não .Peço desculpas , copiei erroneamente a primeira resposta . O correto é 1/(x^2 +x + 1) .

Veja por que , \frac{1-x}{1-x^3} = \frac{-(x-1)}{-(x^3 - 1)} = \frac{x-1}{x^3 - 1} .

Assim fazendo a divisão de x^3 - 1 por x-1 vamos obter que x^3 - 1 = (x -1)(x^2 + x + 1) .Logo , \frac{1-x}{1-x^3} = \frac{1}{x^2 + x + 1}   ,  x \neq 1

Tem um caso geral x^n -a^n   = a^{n-1}  + a^{n-2} x  + a^{n-3}x^2 +  \dots + a x^{n-2} + x^{n-1} ou de forma compacta \sum_{k=0}^{n-1} a^{n-(k+1)} x^{k} . Basta dividir x^n -a^n por x -a
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor fabriel » Dom Jan 06, 2013 13:30

Mas eu tenho que excluir o 1?
Pois Se calcularmos os limites laterais dessa função:
\frac{1}{x^2 + x +1}
Obteremos:\frac{1}{3}
logo esse limite quando x tende a 1 existe, que é: \frac{1}{3}
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor e8group » Dom Jan 06, 2013 14:13

Boa tarde .Note que em hipótese nenhuma podemos fazer a simplificação\frac{1-x}{1-x^3} obtendo \frac{1}{x^2 + x + 1} sem deixar claro que x \neq 1 . Caso contrário , por um lado 1/(1^2 + 1 + 1)  = 1/3 .Entretanto, por outro lado \frac{1-1}{1-1^3} ???? (Não estar definido ) .

Acontece que tomar limite quando x tende a 1 .É diferente que calcular x = 1(que não estar definido) . Note que x estar em vizinhança do número 1 ,por isso é natural que os limites laterais resultam um número bem próximo de 1/3 .(Mas não 1/3 ) .

Façamos uma analogia , Sejam g : x  \mapsto  x-1 e f :  x \mapsto  \frac{x^2 -2x +1}{x-1} .

Perceba que g \neq f pois D_g  \neq D_f .Pois D_f = \mathbb{R}- \{ -1\} \subset D_g = \mathbb{R} e domínio de g não estar contido no domínio de f .

Mas note que f(x) = x- 1
. Pois \frac{x^2 - 2x + 1}{x-1}  = \frac{(x-1)^2}{x-1}  = x- 1 . É bem provável que alguém afirme que g = f . Mas note que isto não é verdade , só fizermos esta simplificação com o domínio da função f bem definido .
Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [INTEGRAL DEF.] Dúvida(s)

Mensagempor fabriel » Dom Jan 06, 2013 14:50

Boa tarde. Ok obrigado!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?