por Danilo » Dom Jun 10, 2012 20:55
Empacado numa das alternativas da questão. Fiz as 3 primeiras e empaquei na última. Vou postar todas as alternativas pois podem ser úteis na solução.
Dados P (2,2) e (r) 3x+2y-6 = 0, forneça:
a) equação de s perpendicular a r por P. (encontrei 2X-3Y+2=0)
b) o ponto M pé da perpendicular a r por P; (encontrei M (14/13, 10/13))
c) o ponto Q simétrico de P em relação a r; (encontrei Q ( 2/13, 10/13))
e que não estou conseguindo fazer...
d) a reta t simétrica de r em relação a P.
Bom, para resolver a d) utilizei os resultados anteriores que encontrei. Tracei, pelo ponto Q (2/13, 10/13) uma reta paralela à reta r. Como eu já sei a equação da reta r e esta reta r é perpendicular a r e a t, eu tenho o coeficiente angular de t e um ponto de t, logo eu tenho a equação da reta (me corrijam se eu estiver errado). aí, utilizei y-10/13= -3/2 ( x-2/13) => 3x-2y+2=0 cujo resultado não condiz com o correto segundo o livro, e no livro está 3x+2y+14=0. Agradeço qualquer ajuda, vlw!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Jun 11, 2012 12:28
Danilo escreveu:Empacado numa das alternativas da questão. Fiz as 3 primeiras e empaquei na última. Vou postar todas as alternativas pois podem ser úteis na solução.
Dados P (2,2) e (r) 3x+2y-6 = 0, forneça:
a) equação de s perpendicular a r por P. (encontrei 2X-3Y+2=0)
b) o ponto M pé da perpendicular a r por P; (encontrei M (14/13, 10/13))
c) o ponto Q simétrico de P em relação a r; (encontrei Q ( 2/13, 10/13))
e que não estou conseguindo fazer...
d) a reta t simétrica de r em relação a P.
Bom, para resolver a d) utilizei os resultados anteriores que encontrei. Tracei, pelo ponto Q (2/13, 10/13) uma reta paralela à reta r. Como eu já sei a equação da reta r e esta reta r é perpendicular a r e a t, eu tenho o coeficiente angular de t e um ponto de t, logo eu tenho a equação da reta (me corrijam se eu estiver errado). aí, utilizei y-10/13= -3/2 ( x-2/13) => 3x-2y+2=0 cujo resultado não condiz com o correto segundo o livro, e no livro está 3x+2y+14=0.
O ponto M seria (14/13, 18/13) e não (14/13, 10/13) como você escreveu. Além disso, você disse que "(...)
esta reta r é perpendicular a r (...)", o que não faz sentido.
Por fim, a reta simétrica de r em relação a P será 3x + 2y - 14 = 0 e não 3x + 2y + 14 = 0.
Note que você não usará o resultado de c) para resolver d). Perceba que Q é o simétrico de P em relação a r. Mas desejamos a reta t que é simétrica a r em relação a P. Veja que Q não pertence a t! Você pode determinar um ponto T de t através da relação:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Seg Jun 11, 2012 20:37
"O ponto M seria (14/13, 18/13) e não (14/13, 10/13) como você escreveu. Além disso, você disse que "(...)
esta reta r é perpendicular a r (...)", o que não faz sentido."
Perdão, errei ao colocar o ponto aqui. Professor, o que eu queria dizer é em relação a reta s que é perpendicular a r por P (foi como resolvi a alternativa a) ). Aí, pelo ponto Q eu tracei a reta t, colocando t paralela à reta r.Tracei a reta paralela porque, penso eu, se Q é simétrico a P então, traçando a reta t que passa por Q paralela a r esta reta t vai ser simétrica a r e ao ponto P (já que Q é simétrico a P e Q pertenceria a reta t).
"Note que você não usará o resultado de c) para resolver d). Perceba que Q é o simétrico de P em relação a r. Mas desejamos a reta t que é simétrica a r em relação a P. Veja que Q não pertence a t! Você pode determinar um ponto T de t através da relação:

.[/quote]"
Para t ser simétrica a r, Q não pode pertencer à reta t necessariamente, certo? Resolvendo as 3 primeiras alternativas eu fiz um desenho tal que ficou parecido com o plano cartesiano, a reta r como se fosse o eixo x e a reta s como se fosse o eixo y, como se M (pé da perpendicular) fosse a origem e P acima M e Q abaixo de M. Mas não consigo desenhar ou visualizar uma reta t tal que eu consiga encaixar todas essas informações e ao mesmo tempo a reta t seja seja simétrica de r em relação a P.
''Por fim, a reta simétrica de r em relação a P será 3x + 2y - 14 = 0 e não 3x + 2y + 14 = 0.''
Então, utilizando a formula do ponto médio que você me passou consegui um dos pontos da reta t. Para encontrar a equação da reta t preciso saber o coeficiente desta reta? Se sim, poderia me dar um caminho para eu encontrar o coeficiente angular ? Se não poderia me dar um outro caminho para eu encontrar a equação da reta t? Obrigado pela paciencia ! (Esse exercicio sim tá dando mt trabalho huahuahhua).
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Jun 11, 2012 23:42
Danilo escreveu:Então, utilizando a formula do ponto médio que você me passou consegui um dos pontos da reta t. Para encontrar a equação da reta t preciso saber o coeficiente desta reta? Se sim, poderia me dar um caminho para eu encontrar o coeficiente angular ? Se não poderia me dar um outro caminho para eu encontrar a equação da reta t?
Para que a reta t seja simétrica a r em relação a P, temos que t será paralela a r. Com essa informação você determina o coeficiente angular de t.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Seg Jun 11, 2012 23:59
Com a resolução eu entendi tudo. Resolvido. Muito obrigado !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda questão equação paramétrica da reta tangente
por Ahoush123 » Sex Out 23, 2015 23:05
- 2 Respostas
- 1308 Exibições
- Última mensagem por adauto martins

Qui Out 29, 2015 15:29
Cálculo: Limites, Derivadas e Integrais
-
- [Equação da Reta] Reta que passa por pontos do plano.
por acorreia » Qua Mai 02, 2012 17:31
- 1 Respostas
- 2371 Exibições
- Última mensagem por Russman

Qua Mai 02, 2012 21:25
Geometria Analítica
-
- [Estudo da reta] Determinar a equação de uma reta
por Isabelagarcia » Qui Jul 24, 2014 23:45
- 0 Respostas
- 1522 Exibições
- Última mensagem por Isabelagarcia

Qui Jul 24, 2014 23:45
Geometria Analítica
-
- [Equação da reta] Encontrando equação paramétrica.
por Vitor Sanches » Qua Jun 26, 2013 17:54
- 0 Respostas
- 6003 Exibições
- Última mensagem por Vitor Sanches

Qua Jun 26, 2013 17:54
Geometria Analítica
-
- Equação da Reta
por aline2010 » Dom Jun 13, 2010 23:16
- 1 Respostas
- 1595 Exibições
- Última mensagem por Elcioschin

Seg Jun 14, 2010 12:16
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.