• Anúncio Global
    Respostas
    Exibições
    Última mensagem

trigonometria (Puc - SP)

trigonometria (Puc - SP)

Mensagempor Suellen » Seg Abr 16, 2012 19:30

De um ponto A no solo, visam-se a base B e o topo C de um bastão colocado verticalmente no alto de uma colina, sob um ângulo de 30º e 45º, respectivamente. Se o bastão mede 4 m de comprimento, a altura da colina, em metros, é igual a:

a)\sqrt[]{3}
b)2
c)2\sqrt[]{3}
d)2(\sqrt[]{3}+1)
e)2(\sqrt[]{3}+3)

a resposta é a letra d) só que eu quero saber como que resolve por favor?
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: trigonometria (Puc - SP)

Mensagempor fraol » Ter Abr 17, 2012 22:04

Boa noite,

Segue figura ilustrativa:
fig.png
figura


Na figura temos: tg 45^o = 1 = \frac{Altura}{Base} \iff Base = Altura

Na figura temos: tg 30^o = \frac{\sqrt{3}}{3} = \frac{Altura - 4}{Base} \iff Base = (Altura - 4)\sqrt{3}

Igualando as duas expressões temos:

(Altura - 4)\sqrt{3} = Altura \iff Altura \sqrt{3} - 4\sqrt{3} = Altura \iff

Altura(\sqrt{3} - 1) = 4 \sqrt{3} \iff Altura = \frac{4 \sqrt{3}}{(\sqrt{3} - 1)} \iff

Altura = \frac{12 + 4 \sqrt{3}}{(3 - 1)} \iff Altura = \frac{12 + 4 \sqrt{3}}{2} Altura = 6 + 2 \sqrt{3}

E finalmente:

Altura = 2(\sqrt{3} + 3)}

Veja que esse resultado não bate com o gabarito dado.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: trigonometria (Puc - SP)

Mensagempor fraol » Qua Abr 18, 2012 11:00

Boa dia,

Estive pensando sobre a divergência entre a solução que postei antes e o gabarito e cheguei a conclusão que interpretei erradamente o enunciado.

Na figura que apresentei você deve considerar o trecho DE como sendo a Altura da colina.

Alterando de acordo com a nova abordagem:

Na figura temos: tg 45^o = 1 = \frac{Altura + 4}{Base} \iff Base = Altura + 4

Na figura temos: tg 30^o = \frac{\sqrt{3}}{3} = \frac{Altura}{Base} \iff Base = (Altura)\sqrt{3}

Igualando as duas expressões temos:

(Altura)\sqrt{3} = Altura + 4 \iff Altura \sqrt{3} - Altura = 4 \iff

Altura(\sqrt{3} - 1) = 4  \iff Altura = \frac{4 }{(\sqrt{3} - 1)} \iff

Altura = \frac{ 4 (\sqrt{3} + 1}{(3 - 1)} \iff Altura = \frac{4 \sqrt{3} + 4 }{2} Altura = 2 + 2 \sqrt{3} = 2(\sqrt{3} + 1)

Assim sendo o gabarito apresentado está correto.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: trigonometria (Puc - SP)

Mensagempor Suellen » Qua Abr 25, 2012 20:23

obg pela resposta.
só não entendi as duas ultimas linhas da sua segunda resposta
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: trigonometria (Puc - SP)

Mensagempor fraol » Qui Abr 26, 2012 15:40

Boa tarde vou adicionar os passos intermediários nas duas linhas finais, veja:



Na figura temos: tg 45^o = 1 = \frac{Altura + 4}{Base} \iff Base = Altura + 4

Na figura temos: tg 30^o = \frac{\sqrt{3}}{3} = \frac{Altura}{Base} \iff Base = (Altura)\sqrt{3}

Igualando as duas expressões temos:

(Altura)\sqrt{3} = Altura + 4 \iff Altura \sqrt{3} - Altura = 4 \iff

(Altura)\sqrt{3} - Altura =  4 \iff , agora colocaremos Altura em evidência

Altura(\sqrt{3} - 1) = 4  \iff Altura = \frac{4 }{(\sqrt{3} - 1)} \iff , aqui levamos (\sqrt{3} - 1) para o segundo membro com a operação inversa .

Altura = \frac{4 }{(\sqrt{3} - 1)} . \frac{\sqrt{3} + 1)}{\sqrt{3} + 1)} \iff com esta multiplicação obtemos uma diferença de quadrados no denominador que tem como resultado o quadrado do primeiro termo menos o quadrado do segundo termo, assim:

Altura = \frac{ 4 (\sqrt{3} + 1}{(3 - 1)} \iff

Altura = \frac{4 \sqrt{3} + 4 }{2}, neste passo efetuamos a multiplicação no numerador e a diferença no denominador.

Altura = 2 + 2 \sqrt{3} = , aqui dividimos por 2 e

finalmente, colocamos o 2 em evidência e obtemos Altura = 2(\sqrt{3} + 1) .

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: trigonometria (Puc - SP)

Mensagempor Suellen » Qui Mai 03, 2012 17:55

Agora sim eu entendi tudo!
Mt obg pela paciência ;)

Boa tarde
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59