por Suellen » Seg Abr 16, 2012 19:30
De um ponto A no solo, visam-se a base B e o topo C de um bastão colocado verticalmente no alto de uma colina, sob um ângulo de 30º e 45º, respectivamente. Se o bastão mede 4 m de comprimento, a altura da colina, em metros, é igual a:
![a)\sqrt[]{3}
b)2
c)2\sqrt[]{3}
d)2(\sqrt[]{3}+1)
e)2(\sqrt[]{3}+3) a)\sqrt[]{3}
b)2
c)2\sqrt[]{3}
d)2(\sqrt[]{3}+1)
e)2(\sqrt[]{3}+3)](/latexrender/pictures/f603eb4d5f036bf84aaaaecea4c93ea9.png)
a resposta é a letra d) só que eu quero saber como que resolve por favor?
-
Suellen
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Abr 12, 2012 22:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Ter Abr 17, 2012 22:04
Boa noite,
Segue figura ilustrativa:

- figura
Na figura temos:

Na figura temos:

Igualando as duas expressões temos:



E finalmente:

Veja que esse resultado não bate com o gabarito dado.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por fraol » Qua Abr 18, 2012 11:00
Boa dia,
Estive pensando sobre a divergência entre a solução que postei antes e o gabarito e cheguei a conclusão que interpretei erradamente o enunciado.
Na figura que apresentei você deve considerar o
trecho DE como sendo a Altura da colina.
Alterando de acordo com a nova abordagem:
Na figura temos:

Na figura temos:

Igualando as duas expressões temos:



Assim sendo o gabarito apresentado está correto.
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Suellen » Qua Abr 25, 2012 20:23
obg pela resposta.
só não entendi as duas ultimas linhas da sua segunda resposta
-
Suellen
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Abr 12, 2012 22:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Qui Abr 26, 2012 15:40
Boa tarde vou adicionar os passos intermediários nas duas linhas finais, veja:
Na figura temos:

Na figura temos:

Igualando as duas expressões temos:


, agora colocaremos Altura em evidência

, aqui levamos

para o segundo membro com a operação inversa .

com esta multiplicação obtemos uma diferença de quadrados no denominador que tem como resultado o quadrado do primeiro termo menos o quadrado do segundo termo, assim:

, neste passo efetuamos a multiplicação no numerador e a diferença no denominador.

, aqui dividimos por 2 e
finalmente, colocamos o 2 em evidência e obtemos

.
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Suellen » Qui Mai 03, 2012 17:55
Agora sim eu entendi tudo!
Mt obg pela paciência
Boa tarde
-
Suellen
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Abr 12, 2012 22:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [trigonometria] trigonometria em triangulo qualquer
por biamassa00 » Sex Mai 25, 2012 22:19
- 0 Respostas
- 3501 Exibições
- Última mensagem por biamassa00

Sex Mai 25, 2012 22:19
Trigonometria
-
- (Trigonometria) problema trigonometria
por Luizap11 » Qui Dez 05, 2013 00:33
- 2 Respostas
- 5110 Exibições
- Última mensagem por Edunclec

Qui Dez 05, 2013 20:53
Trigonometria
-
- trigonometria
por Cleyson007 » Qua Set 24, 2008 19:44
- 2 Respostas
- 3326 Exibições
- Última mensagem por admin

Ter Set 30, 2008 19:08
Trigonometria
-
- trigonometria
por Micheline » Dom Jan 25, 2009 16:21
- 5 Respostas
- 4835 Exibições
- Última mensagem por Cleyson007

Seg Jan 26, 2009 17:27
Trigonometria
-
- Trigonometria
por Flavio » Sex Fev 13, 2009 21:29
- 5 Respostas
- 4970 Exibições
- Última mensagem por Molina

Seg Fev 16, 2009 01:53
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.