• Anúncio Global
    Respostas
    Exibições
    Última mensagem

trigonometria (Puc - SP)

trigonometria (Puc - SP)

Mensagempor Suellen » Seg Abr 16, 2012 19:30

De um ponto A no solo, visam-se a base B e o topo C de um bastão colocado verticalmente no alto de uma colina, sob um ângulo de 30º e 45º, respectivamente. Se o bastão mede 4 m de comprimento, a altura da colina, em metros, é igual a:

a)\sqrt[]{3}
b)2
c)2\sqrt[]{3}
d)2(\sqrt[]{3}+1)
e)2(\sqrt[]{3}+3)

a resposta é a letra d) só que eu quero saber como que resolve por favor?
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: trigonometria (Puc - SP)

Mensagempor fraol » Ter Abr 17, 2012 22:04

Boa noite,

Segue figura ilustrativa:
fig.png
figura


Na figura temos: tg 45^o = 1 = \frac{Altura}{Base} \iff Base = Altura

Na figura temos: tg 30^o = \frac{\sqrt{3}}{3} = \frac{Altura - 4}{Base} \iff Base = (Altura - 4)\sqrt{3}

Igualando as duas expressões temos:

(Altura - 4)\sqrt{3} = Altura \iff Altura \sqrt{3} - 4\sqrt{3} = Altura \iff

Altura(\sqrt{3} - 1) = 4 \sqrt{3} \iff Altura = \frac{4 \sqrt{3}}{(\sqrt{3} - 1)} \iff

Altura = \frac{12 + 4 \sqrt{3}}{(3 - 1)} \iff Altura = \frac{12 + 4 \sqrt{3}}{2} Altura = 6 + 2 \sqrt{3}

E finalmente:

Altura = 2(\sqrt{3} + 3)}

Veja que esse resultado não bate com o gabarito dado.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: trigonometria (Puc - SP)

Mensagempor fraol » Qua Abr 18, 2012 11:00

Boa dia,

Estive pensando sobre a divergência entre a solução que postei antes e o gabarito e cheguei a conclusão que interpretei erradamente o enunciado.

Na figura que apresentei você deve considerar o trecho DE como sendo a Altura da colina.

Alterando de acordo com a nova abordagem:

Na figura temos: tg 45^o = 1 = \frac{Altura + 4}{Base} \iff Base = Altura + 4

Na figura temos: tg 30^o = \frac{\sqrt{3}}{3} = \frac{Altura}{Base} \iff Base = (Altura)\sqrt{3}

Igualando as duas expressões temos:

(Altura)\sqrt{3} = Altura + 4 \iff Altura \sqrt{3} - Altura = 4 \iff

Altura(\sqrt{3} - 1) = 4  \iff Altura = \frac{4 }{(\sqrt{3} - 1)} \iff

Altura = \frac{ 4 (\sqrt{3} + 1}{(3 - 1)} \iff Altura = \frac{4 \sqrt{3} + 4 }{2} Altura = 2 + 2 \sqrt{3} = 2(\sqrt{3} + 1)

Assim sendo o gabarito apresentado está correto.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: trigonometria (Puc - SP)

Mensagempor Suellen » Qua Abr 25, 2012 20:23

obg pela resposta.
só não entendi as duas ultimas linhas da sua segunda resposta
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: trigonometria (Puc - SP)

Mensagempor fraol » Qui Abr 26, 2012 15:40

Boa tarde vou adicionar os passos intermediários nas duas linhas finais, veja:



Na figura temos: tg 45^o = 1 = \frac{Altura + 4}{Base} \iff Base = Altura + 4

Na figura temos: tg 30^o = \frac{\sqrt{3}}{3} = \frac{Altura}{Base} \iff Base = (Altura)\sqrt{3}

Igualando as duas expressões temos:

(Altura)\sqrt{3} = Altura + 4 \iff Altura \sqrt{3} - Altura = 4 \iff

(Altura)\sqrt{3} - Altura =  4 \iff , agora colocaremos Altura em evidência

Altura(\sqrt{3} - 1) = 4  \iff Altura = \frac{4 }{(\sqrt{3} - 1)} \iff , aqui levamos (\sqrt{3} - 1) para o segundo membro com a operação inversa .

Altura = \frac{4 }{(\sqrt{3} - 1)} . \frac{\sqrt{3} + 1)}{\sqrt{3} + 1)} \iff com esta multiplicação obtemos uma diferença de quadrados no denominador que tem como resultado o quadrado do primeiro termo menos o quadrado do segundo termo, assim:

Altura = \frac{ 4 (\sqrt{3} + 1}{(3 - 1)} \iff

Altura = \frac{4 \sqrt{3} + 4 }{2}, neste passo efetuamos a multiplicação no numerador e a diferença no denominador.

Altura = 2 + 2 \sqrt{3} = , aqui dividimos por 2 e

finalmente, colocamos o 2 em evidência e obtemos Altura = 2(\sqrt{3} + 1) .

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: trigonometria (Puc - SP)

Mensagempor Suellen » Qui Mai 03, 2012 17:55

Agora sim eu entendi tudo!
Mt obg pela paciência ;)

Boa tarde
Suellen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 12, 2012 22:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: