• Anúncio Global
    Respostas
    Exibições
    Última mensagem

eliminando b

eliminando b

Mensagempor mvww » Sáb Mar 19, 2011 17:24

Olá.
Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a
[]s
mvww
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 19, 2011 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: eliminando b

Mensagempor LuizAquino » Sáb Mar 19, 2011 18:41

mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a


Assim do jeito que está não há como eliminar o termo b. Veja o desenvolvimento abaixo.

\frac{1}{(a+b)^2} - \frac{1}{(a-b)^2} = \left(\frac{1}{a+b}\right)^2 - \left(\frac{1}{a-b}\right)^2

= \left(\frac{1}{a+b} + \frac{1}{a-b}\right)\left(\frac{1}{a+b} - \frac{1}{a-b}\right)

= \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right]

= \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right]

= -\frac{4ab}{[(a+b)(a-b)]^2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: eliminando b

Mensagempor mvww » Sáb Mar 19, 2011 20:03

LuizAquino escreveu:
mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a


Assim do jeito que está não há como eliminar o termo b. Veja o desenvolvimento abaixo.

\frac{1}{(a+b)^2} - \frac{1}{(a-b)^2} = \left(\frac{1}{a+b}\right)^2 - \left(\frac{1}{a-b}\right)^2

= \left(\frac{1}{a+b} + \frac{1}{a-b}\right)\left(\frac{1}{a+b} - \frac{1}{a-b}\right)

= \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right]

= \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right]

= -\frac{4ab}{[(a+b)(a-b)]^2}

Valeu :)
mvww
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 19, 2011 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?