Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em

quero deixar apenas em função de a
[]s


mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
quero deixar apenas em função de a


![= \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right] = \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right]](/latexrender/pictures/57cc1c4ce0aaed233dbfe2dd475f116c.png)
![= \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right] = \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right]](/latexrender/pictures/1a5bc0f28485a259937ea23b1f3b7fa9.png)
![= -\frac{4ab}{[(a+b)(a-b)]^2} = -\frac{4ab}{[(a+b)(a-b)]^2}](/latexrender/pictures/43177a1beb9d9dd0816428505c311dff.png)

LuizAquino escreveu:mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
quero deixar apenas em função de a
Assim do jeito que está não há como eliminar o termo b. Veja o desenvolvimento abaixo.


Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
} e B = {
}, então o número de elementos A
B é:
} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?