• Anúncio Global
    Respostas
    Exibições
    Última mensagem

área

área

Mensagempor arima » Sex Nov 19, 2010 18:31

Alguem me ajude no seguinte exercício.
Quando tento fazer e não consigo sonho a noite toda com o exercício.
[b][size=150]2) Sejam dadas duas circunferencias concentricas(mesmocentro) e considere uma corda de comprimento c, da circunferencia exterior, que tangencia a circunferencia interior. Mostre que a area da região comprendida entre as duas circunferencias é igual a pi.{c}^{2}/4.
Lembre que uma reta tangente á uma circunferencia é perpendicular ao raio no ponto de tangencia.
Obrigada!!!!!
arima
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sáb Out 23, 2010 18:25
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: área

Mensagempor MarceloFantini » Sex Nov 19, 2010 19:50

Trace o raio da maior até o ponto onde a corda corta a circunferência maior, e depois trace o raio da menor onde ela tangencia a corda. Isso forma um triângulo retângulo de catetos \frac{c}{2}, r e hipotenusa R. Sabemos que a área da coroa circular é a área da maior menos a área da menor, ou seja, \pi (R^2 - r^2). Aplicando pitágoras no triângulo encontrado:

R^2 = \frac{c^2}{4} + r^2 \iff R^2 - r^2 = \frac{c^2}{4}

Substituindo na área da coroa circular:

A = \pi (R^2 - r^2) = \frac{\pi c^2}{4}

Arima, sugiro que você revise fortemente geometria euclidana plana, pois essa "demonstração" é muito simples.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: área

Mensagempor arima » Sáb Nov 20, 2010 14:58

Fantini isso eu tinha feito mas eu não estava entendendo qual era a área que o exercício estava pedid. Pois achei que estava facil é não deveria ser isso.veja o desenho que fiz.
vou enviar anexo.
arima
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sáb Out 23, 2010 18:25
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: área

Mensagempor arima » Sáb Nov 20, 2010 15:01

arima escreveu:Fantini isso eu tinha feito mas eu não estava entendendo qual era a área que o exercício estava pedid. Pois achei que estava facil é não deveria ser isso.veja o desenho que fiz.
vou enviar anexo.
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

arima
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sáb Out 23, 2010 18:25
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: área

Mensagempor MarceloFantini » Sáb Nov 20, 2010 15:11

Entendi.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D