• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por substituição.

Integral por substituição.

Mensagempor Sobreira » Ter Ago 20, 2013 08:56

Tenho que resolver a seguinte integral:

\int_{}^{}\frac{2x}{\left(x+3 \right)}dx

Tentei resolver por substituição. Sei que posso resolver somando e diminuindo três no numerador para separar o denominador e ficar com 1-\frac{3}{\left(x+3 \right)}.

Mas resolvendo por substituição:

u=x+3

x=u-3

\frac{du}{dx}=1

du=dx

2\int_{}^{}\frac{u-3}{u}du

2\int_{}^{}1-\frac{3}{u}du

2\left[u-3Lnu \right]+C

Logo:

2\left[\left(x+3 \right)-3Ln(x+3) \right]+C

Mas a resposta é:

2\left[x-3Ln\left(x+3 \right) \right]+c

Onde está meu erro?
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Integral por substituição.

Mensagempor Russman » Ter Ago 20, 2013 13:51

Sua resposta está certa! Veja que a constante C que surge no processo de integração é arbitrária. Isto é, pode ser qualquer uma. Assim, quando você efetua a multiplicação 2.3 na sua resposta obtém o restante da função somado a um valor constante 6 que é absorvido pela própria constante C. Veja que isso só se pode fazer quando a constante for arbitrária.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral por substituição.

Mensagempor Sobreira » Ter Ago 20, 2013 16:45

Deixa eu ver se entendi.
Na verdade ficaria 6+C, que resulta em outra C ??
Com relação a constante arbitrária significa que quando eu encontro uma solução que serve para uma família de funções esta constante pode ser arbitrária, enquanto que quando eu determino a constante eu estou determinando uma função específica?
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Integral por substituição.

Mensagempor Russman » Ter Ago 20, 2013 17:21

SIm, 6+c é tão arbitrário quanto c.

Exatamente. Existe toda uma família de funções que quando derivadas resultam no integrando que você integrou. Isso se deve basicamente ao fato de que a derivada da função constante é nula e precisamos levar isso em conta. Assim, a constante que aparece representa essa propriedade e pode gerar não uma mas infinitas soluções para o mesmo problema de forma que a definimos como arbitrária.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral por substituição.

Mensagempor Sobreira » Ter Ago 20, 2013 17:43

Muito Obrigado!!
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Integral por substituição.

Mensagempor Sobreira » Qua Ago 21, 2013 12:23

Tratando ainda a respeito da questão de constantes, tenho esta dúvida:
Tendo por exemplo a seguinte equação diferencial:

\frac{dy}{dx}=x\sqrt[]{y}

Resolvendo esta equação eu encontro como resposta uma família de funções:

y={\left(\frac{{x}^{2}}{4} +C\right)}^{2}

Logo, eu entendo que se eu determinar qualquer valor para a constante, esta função com esta constante será solução da equação diferencial. Ou seja se eu determino 0 para constante:

y'=\frac{{4x}^{3}}{16}=\frac{{x}^{3}}{4}

\frac{{x}^{3}}{4}=x\sqrt[]{\frac{{x}^{4}}{16}}

Ou seja, esta função com esta constante é solução da E.D.O.

Entretanto se atribuo C=3 por exemplo:

\frac{{x}^{3}}{4}=x\sqrt[]{\frac{{x}^{4}}{16}+9}

Ou seja, esta função está dentro da família de soluções encontradas mas utilizando esta constante a equação não é satisfeita.
Onde estou errado?
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D