• Anúncio Global
    Respostas
    Exibições
    Última mensagem

eliminando b

eliminando b

Mensagempor mvww » Sáb Mar 19, 2011 17:24

Olá.
Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a
[]s
mvww
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 19, 2011 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: eliminando b

Mensagempor LuizAquino » Sáb Mar 19, 2011 18:41

mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a


Assim do jeito que está não há como eliminar o termo b. Veja o desenvolvimento abaixo.

\frac{1}{(a+b)^2} - \frac{1}{(a-b)^2} = \left(\frac{1}{a+b}\right)^2 - \left(\frac{1}{a-b}\right)^2

= \left(\frac{1}{a+b} + \frac{1}{a-b}\right)\left(\frac{1}{a+b} - \frac{1}{a-b}\right)

= \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right]

= \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right]

= -\frac{4ab}{[(a+b)(a-b)]^2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: eliminando b

Mensagempor mvww » Sáb Mar 19, 2011 20:03

LuizAquino escreveu:
mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a


Assim do jeito que está não há como eliminar o termo b. Veja o desenvolvimento abaixo.

\frac{1}{(a+b)^2} - \frac{1}{(a-b)^2} = \left(\frac{1}{a+b}\right)^2 - \left(\frac{1}{a-b}\right)^2

= \left(\frac{1}{a+b} + \frac{1}{a-b}\right)\left(\frac{1}{a+b} - \frac{1}{a-b}\right)

= \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right]

= \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right]

= -\frac{4ab}{[(a+b)(a-b)]^2}

Valeu :)
mvww
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 19, 2011 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)