• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo

Cálculo

Mensagempor marinalcd » Sex Abr 19, 2013 11:48

Não estou conseguindo resolver este problema:

Seja S a superfície da esfera x²+y²+z²=a², situada no interior do cilindro x²+y² = ay, com a > 0. Determine o valor de a de modo que A(S)= 18(\Pi-2) unidades de área.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Sex Abr 19, 2013 16:15

a integral de superficie da esfera é dada por

\int\int R^2cos(\phi)d\theta d\phi

então voce tem que determinar os limites de integração, temos que
R=a

x=acos(\phi)cos(\theta)

x=acos(\phi)sen(\theta)

substituindo na equação do cilindro temos

a^2cos^2(\phi)cos^2(\theta)+a^2cos^2(\phi)cos^2(\theta)=a^2cos(\phi)cos(\theta)

a^2cos^2(\phi)=a^2cos(\phi)cos(\theta)

cos(\phi)=cos(\theta)

\phi=\theta

então a integral fica

2\int_{0}^{\frac{\pi}{2}}\int_{-\phi}^{\phi} a^2cos(\phi)d\theta d\phi

tente resolver a integral e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Sex Abr 19, 2013 16:42

Obrigada pelo auxílio!

Seguindo o seu raciocínio, estou resolvendo aqui, mas na hora de substituir na equação do cilindro o meu resultado deu diferente.
Acho que você só substituiu o valor de x. ...
Agora vou tentar resolver a integral!

Valeu!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Sex Abr 19, 2013 18:00

é verdade, na realidade eu substitui errado o valor de y

seria

a^2cos^2(\phi)cos^2(\theta)+a^2cos^2(\phi)sen^2(\theta)=a^2cos(\phi)sen(\theta)

a^2cos^2(\phi)=a^2cos(\phi)sen(\theta)

cos(\phi)=sen(\theta)

cos(\phi)=cos\left(\theta-\frac{\pi}{2}\right)

então

\phi=\theta-\frac{\pi}{2}

\theta=\phi+\frac{\phi}{2}

portanto a integral fica

2\int_{0}^{\frac{\pi}{2}}\int_{-\phi-\frac{\pi}{2}}^{\phi+\frac{\pi}{2}}a^2cos(\phi)d\theta d\phi
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Seg Abr 22, 2013 20:32

Olá! Consegui fazer até a substituição na equação do cilindro e cheguei em:

cos\phi = sen\Theta

Mas não entendi como você determinou os limites de integração. Não consegui sair dessa relação.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Ter Abr 23, 2013 11:19

então utilizando aqulea relação de seno e cosseno que eu coloquei voce chega em

\theta=\phi+\frac{\pi}{2}

como se trata de um cilindro, pela simetria circular dele agente tem então que -\phi-\frac{\pi}{2}\leq\theta\leq\phi+\frac{\pi}{2}

o o angulo \phi se determina pelo limite da esfera
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Qua Abr 24, 2013 14:14

Eu costumo colocar o \theta determinado pelo limite da esfera.

Aí, para achar o \phi eu calculei o seno de teta (com os limites da esfera) e calculei a inversa do cossseno, encontrando assim os limites de \phi.

Pode ser assim? Pois deu diferente do seu, logo a integral dará diferente.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Qua Abr 24, 2013 14:42

a integral vai ser diferente, mais o valor final tem que ser igual
de qualquer forma faça do jeito que ficar mais facil pra voce visualizar os limites
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Qua Abr 24, 2013 14:47

Só uma última coisa: na minha integral não aparece esse 2 multiplicando. Como você achou?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Qua Abr 24, 2013 14:49

esse 2 é porque essa integral é so para a parte de cima da esfera mais o cilindro corta a esfera na parte de baixo tambem sendo a area das duas partes identicas portanto multipliquei por 2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Sex Abr 26, 2013 18:00

Meu professor falou que deveria utilizar a variação de teta: 0\leq\theta\leq\pi

E que deveria por coordenadas esféricas a equação da interseção para encontrar a variação de \phi, que dependerá de \theta.

Mas ao substituir na equação, cheguei na seguinte relação:
cos^{2}\phi = 1- cos\phi.sen\theta

E não consegui determinar a variação de \phi.
Não sei se fiz errado, mas não consegui chegar nessa variação que você chegou.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Sex Abr 26, 2013 18:19

eu não entendi como voce chegou nesta relação
de qualquer forma voce pode fazer a integral para

0<\theta<\pi

e

-\theta+\frac{\pi}{2}<\phi<\theta-\frac{\pi}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D


cron