por marinalcd » Sex Abr 19, 2013 11:48
Não estou conseguindo resolver este problema:
Seja S a superfície da esfera x²+y²+z²=a², situada no interior do cilindro x²+y² = ay, com a > 0. Determine o valor de a de modo que

unidades de área.
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Sex Abr 19, 2013 16:15
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por marinalcd » Sex Abr 19, 2013 16:42
Obrigada pelo auxílio!
Seguindo o seu raciocínio, estou resolvendo aqui, mas na hora de substituir na equação do cilindro o meu resultado deu diferente.
Acho que você só substituiu o valor de x. ...
Agora vou tentar resolver a integral!
Valeu!
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Sex Abr 19, 2013 18:00
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por marinalcd » Seg Abr 22, 2013 20:32
Olá! Consegui fazer até a substituição na equação do cilindro e cheguei em:

Mas não entendi como você determinou os limites de integração. Não consegui sair dessa relação.
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Ter Abr 23, 2013 11:19
então utilizando aqulea relação de seno e cosseno que eu coloquei voce chega em

como se trata de um cilindro, pela simetria circular dele agente tem então que

o o angulo

se determina pelo limite da esfera
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por marinalcd » Qua Abr 24, 2013 14:14
Eu costumo colocar o

determinado pelo limite da esfera.
Aí, para achar o

eu calculei o seno de teta (com os limites da esfera) e calculei a inversa do cossseno, encontrando assim os limites de

.
Pode ser assim? Pois deu diferente do seu, logo a integral dará diferente.
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Qua Abr 24, 2013 14:42
a integral vai ser diferente, mais o valor final tem que ser igual
de qualquer forma faça do jeito que ficar mais facil pra voce visualizar os limites
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por marinalcd » Qua Abr 24, 2013 14:47
Só uma última coisa: na minha integral não aparece esse 2 multiplicando. Como você achou?
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Qua Abr 24, 2013 14:49
esse 2 é porque essa integral é so para a parte de cima da esfera mais o cilindro corta a esfera na parte de baixo tambem sendo a area das duas partes identicas portanto multipliquei por 2
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por marinalcd » Sex Abr 26, 2013 18:00
Meu professor falou que deveria utilizar a variação de teta:

E que deveria por coordenadas esféricas a equação da interseção para encontrar a variação de

, que dependerá de

.
Mas ao substituir na equação, cheguei na seguinte relação:

E não consegui determinar a variação de \phi.
Não sei se fiz errado, mas não consegui chegar nessa variação que você chegou.
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Sex Abr 26, 2013 18:19
eu não entendi como voce chegou nesta relação
de qualquer forma voce pode fazer a integral para

e

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Calculo]Alguém me ajuda nessa questão de calculo pfv.
por moeni » Seg Abr 04, 2022 21:54
- 0 Respostas
- 6199 Exibições
- Última mensagem por moeni

Seg Abr 04, 2022 21:54
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] calculo de integral - coordenada esferica
por fatalshootxd » Ter Mar 31, 2015 00:43
- 1 Respostas
- 4386 Exibições
- Última mensagem por adauto martins

Sáb Abr 04, 2015 16:13
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo] Cálculo Polinômio Interpolador
por barbara-rabello » Qui Out 22, 2015 20:07
- 1 Respostas
- 2534 Exibições
- Última mensagem por adauto martins

Sáb Out 24, 2015 11:00
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo] Exercícios de Calculo
por Thomas » Seg Mai 16, 2016 16:39
- 0 Respostas
- 0 Exibições
- Última mensagem por Visitante

Qua Dez 31, 1969 22:00
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo: Limites, Derivadas e Integrais] Cálculo de limites
por jeferson lopes » Ter Mar 26, 2013 08:49
- 2 Respostas
- 4920 Exibições
- Última mensagem por jeferson lopes

Ter Mar 26, 2013 11:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.