• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITES

LIMITES

Mensagempor Fabio Cabral » Qua Out 13, 2010 13:03

Olá, galera. Voltei aqui para que me ajudem a terminar alguns exercícios para a prova, ok ?

vamos lá:

1. Aplicando propriedades de limites e algébricas, calcule cada limite abaixo e avalie sua existência, dizendo se eles existem ou não.

\lim_{x\rightarrow\frac{5}{2}} \frac{{4x}^{2}-25}{2x-5} = \frac{4(x+5)(x-5)}{2x-5}

pois bem.
eu fiz isso certo ?
não estou conseguindo sair daí.
obrigado.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES

Mensagempor Neperiano » Qua Out 13, 2010 16:52

Ola

Corte o 2 debaixo com o 4 de cima, depois é so cortar o x-5 de cima com o debaixo

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: LIMITES

Mensagempor Fabio Cabral » Qua Out 13, 2010 17:46

Eu consegui resolver, mas a resposta deu 15 sendo que o certo seria 10. pode me ajudar?

segue o que eu fiz:

\lim_{x\rightarrow\frac{5}{2}} \frac{{4x}^{2}-25}{2x-5} = \frac{4(x+5)(x-5)}{2x-5} = 2(x+5) = 15

Será que eu errei na simplificação ?

Grato.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES

Mensagempor MarceloFantini » Qua Out 13, 2010 17:47

Vou apenas corrigir uma desatenção:

\lim_{x \to \frac{5}{2}} \frac{4x^2 -25}{2x-5} = \lim_{x \to \frac{5}{2}} \frac{4(x+\frac{5}{2})(x-\frac{5}{2})}{2(x-\frac{5}{2})} = \lim_{x \to \frac{5}{2}} 2(x+\frac{5}{2}) = 2(\frac{5}{2} + \frac{5}{2}) = 10
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: LIMITES

Mensagempor Fabio Cabral » Qua Out 13, 2010 18:33

Grande Fantini. Obrigado novamente.
Aproveitando o tópico, vou tirar todas as dúvidas aqui. consegui fazer 20 questões de 60. Ta devagar mas ta indo. rs

\lim_{x\rightarrow7-} \frac{{x}^{3}-{x}^{2}- 56x}{{x}^{2}+9x+14} = \frac{x({x}^{2}-x-56)}{{x}^{2}+ 9x + 14} = \frac{x({x}^{2}-x-56)}{(x+2)(x+7)}

dai eu não consigo sair pois quando faço báscara para calcular as raízes do numerador, o resultado indica que não possui raízes.
corrija-me se estiver errado. A resposta = 0.


ps.: desculpa o tanto de perguntas, é que estou tentando enteder tudo..

Grato.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES

Mensagempor MarceloFantini » Qua Out 13, 2010 18:47

Fábio, não se esqueça de escrever sempre o limite até ser calculado, caso contrário está errado. E veja:

f(x) = x^2 -x -56

\Delta = (-1)^2 -4 \cdot 1 \cdot -56 = 1 + 224 = 225

x = \frac{-(-1) \pm \sqrt{225}}{2 \cdot 1} = \frac{1 \pm 15}{2}

x_1 = 8

x_2 = -7

f(x) = (x-8)(x+7)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: LIMITES

Mensagempor Fabio Cabral » Qua Out 13, 2010 20:34

Nooossa, que mancada que eu dei. Falta de atenção. Errei um sinal..
Obrigado novamente.
Com essas questões que você me tira as dúvidas, consigo fazer em média 4/5 outras questões, to caminhando bem.

la vai outra:

\lim_{x\rightarrow0} \frac{\sqrt[2]{7+t}-\sqrt[2]{7}}{t}

Eu tentei fazer aqui de acordo com o que eu sei, e consegui achar 1/14. Mas não sei se esta certo.

;)
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES

Mensagempor Elcioschin » Qua Out 13, 2010 22:41

Multiplique o numerador e o denominador pelo conjugado V(7 + t) + V7

No numerador se obtém (7 + t) - 7 = t

Simplifique t do numerador e do denominador

Sobra no denominador V(7 + t) + 7

Fazendo t = 0 o denominador fica ----> 2*V7

1/2*V7 = V7/14
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: LIMITES

Mensagempor Fabio Cabral » Qui Out 14, 2010 09:43

Entendo. Mas acho que tem algo errado.
A resposta está como \frac{1}{14}\sqrt[]{7}

:(
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES

Mensagempor Elcioschin » Qui Out 14, 2010 14:26

Exatamente a minha resposta: a letra V significa "raiz quadrada".
E é óbvio que 1*V7 = V7
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: LIMITES

Mensagempor Fabio Cabral » Seg Out 18, 2010 09:26

Obrigado novamente.
Vamos lá.

Surgiu uma dúvida aqui.

\lim_{x\rightarrow0-}\frac{{x}^{2}+3x+1}{{3x}^{2}+2x} = \frac{1-\infty-\infty}{3-\infty}

Ta certo esse meu desenvolvimento? A resposta seria -? ou +?.

deduzi como : \frac{-\infty}{-\infty} = \infty

Grato.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D