• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resultado misterioso de |x|<a alguém saberia me explicar ?

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Resultado misterioso de |x|<a alguém saberia me explicar ?

Mensagempor minyamasaki » Ter Jun 01, 2010 17:58

Quero colocar a inequação |x|<a da seguinte forma:

(i) Se |x|<a então multiplicando os dois membros da inequação por 1/(a*|x|) temos que (1/a)<(1/|x|) considerando que x seja um numero negativo, pela definição de modulo, temos então que (1/a)<(-1/x).

(ii) Se |x|<a, considerando que x seja um número negativo logo, -x<a multiplicando os dois menbros da inequação por -1 temos que x>-a multiplicando novamente os dois membros por 1/(a*x) temos que (1/a)>(-1/x).

Porque os resultados de (i) e (ii) são diferentes e qual seria a resposta correta ?
minyamasaki
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jun 01, 2010 17:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: formado

Re: Resultado misterioso de |x|<a alguém saberia me explicar

Mensagempor MarceloFantini » Ter Jun 08, 2010 19:00

Você errou na parte (ii). Na primeira, lembre-se que você multiplicou por \frac{1}{a|x|}. Ou seja, se x é negativo, retirando o módulo teria que multiplicar por \frac{1}{a(-x)}, o que você não fez na segunda parte, e simplesmente assumiu que x era positivo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resultado misterioso de |x|<a alguém saberia me explicar

Mensagempor jce_335 » Dom Ago 08, 2010 18:04

Você errou em ii) quando multiplicou x > - a por \dfrac{1}{a \cdot x}. Isso não implica em \dfrac{1}{a} > - \dfrac{1}{x}, como você disse. Na verdade aquilo equivale a \dfrac{1}{a} < - \dfrac{1}{x}, pois você mutiplicou a desigualdade por um número negativo: \dfrac{1}{a \cdot x}.

Note que a é positivo, pois você afirmou que |x| < a e o módulo de um número é sempre positivo ou nulo. Por conveniência você afirmou x < 0, logo a expressão \dfrac{1}{a \cdot x} é negativa.
jce_335
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 23, 2010 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.