Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por minyamasaki » Ter Jun 01, 2010 17:58
Quero colocar a inequação |x|<a da seguinte forma:
(i) Se |x|<a então multiplicando os dois membros da inequação por 1/(a*|x|) temos que (1/a)<(1/|x|) considerando que x seja um numero negativo, pela definição de modulo, temos então que (1/a)<(-1/x).
(ii) Se |x|<a, considerando que x seja um número negativo logo, -x<a multiplicando os dois menbros da inequação por -1 temos que x>-a multiplicando novamente os dois membros por 1/(a*x) temos que (1/a)>(-1/x).
Porque os resultados de (i) e (ii) são diferentes e qual seria a resposta correta ?
-
minyamasaki
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Jun 01, 2010 17:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: formado
por MarceloFantini » Ter Jun 08, 2010 19:00
Você errou na parte (ii). Na primeira, lembre-se que você multiplicou por

. Ou seja, se x é negativo, retirando o módulo teria que multiplicar por

, o que você
não fez na segunda parte, e simplesmente assumiu que x era positivo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jce_335 » Dom Ago 08, 2010 18:04
Você errou em

quando multiplicou

por

. Isso não implica em

, como você disse. Na verdade aquilo equivale a

, pois você mutiplicou a desigualdade por um número negativo:

.
Note que

é positivo, pois você afirmou que

e o módulo de um número é sempre positivo ou nulo. Por conveniência você afirmou

, logo a expressão

é negativa.
-
jce_335
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Mai 23, 2010 13:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- N entendi a resolucao, questao de g p, alguem pode explicar?
por bmachado » Ter Mar 27, 2012 00:32
- 1 Respostas
- 4042 Exibições
- Última mensagem por bmachado

Ter Mar 27, 2012 22:35
Geometria Plana
-
- Alguém pode responder e me explicar essas questões?
por Blackhawk » Sex Mai 30, 2014 00:49
- 0 Respostas
- 1232 Exibições
- Última mensagem por Blackhawk

Sex Mai 30, 2014 00:49
Geometria Plana
-
- Alguém poderia me explicar passo a passo?
por arthurvct » Dom Abr 21, 2013 17:12
- 1 Respostas
- 1481 Exibições
- Última mensagem por ant_dii

Seg Abr 22, 2013 00:31
Cálculo: Limites, Derivadas e Integrais
-
- Me ajudem!!! Função para explicar!!!
por paulag » Qui Nov 11, 2010 07:44
- 0 Respostas
- 831 Exibições
- Última mensagem por paulag

Qui Nov 11, 2010 07:44
Funções
-
- Podem me explicar essa equação -> a/b = a * (1/b)
por osdeving » Qua Fev 12, 2014 20:14
- 1 Respostas
- 1227 Exibições
- Última mensagem por osdeving

Qua Fev 12, 2014 23:29
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.