• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Sex Abr 09, 2021 17:16

(ITA-1955)sena=3/5 e cosb=4/7.calcular tang(a+b),sabendo-se que os arcos estao no primeiro quadrante.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Sex Abr 09, 2021 17:52

soluçao

tg(a+b)=(tga+tgb)/1-tga.tgb

foi dado que sena=3/5,vamos encontrar cosa

{sena}^{2}+cosa^2=1\Rightarrow cosa=\sqrt[]{1-sena^2}

como os arcos estao no primeiro quadrante,sao positivos,logo

cosa=\sqrt[]{1-(3/5)^2}=\sqrt[]{16/25}=4/5

foi dado que cos b=4/7,vamos encontrar senb

senb=\sqrt[]{1-(4/7)^2}=\sqrt[]{33/49}=\sqrt[]{33}/7

logo

tg(a+b)=(tga+tgb)/(1-tga.tgb)=((sena/cosa))+(senb/cosb))/(1-(sena/cosa).(senb/cosb))=((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7))=
((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7))
=((3/4)+(\sqrt[]{33}/7)/(1-(3.(\sqrt[]{33}))=(84+\sqrt[]{33})/(28.(1-3.\sqrt[]{33}))
creio que as contas estao certas,costumo errar,mas o racicio é esse...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Sáb Abr 10, 2021 16:40

correçao
refiz as contas é encontrei

4.(3+\sqrt[]{33})/(16-3.\sqrt[]{33})

crei estar correta...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}