• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Sex Abr 09, 2021 17:16

(ITA-1955)sena=3/5 e cosb=4/7.calcular tang(a+b),sabendo-se que os arcos estao no primeiro quadrante.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Sex Abr 09, 2021 17:52

soluçao

tg(a+b)=(tga+tgb)/1-tga.tgb

foi dado que sena=3/5,vamos encontrar cosa

{sena}^{2}+cosa^2=1\Rightarrow cosa=\sqrt[]{1-sena^2}

como os arcos estao no primeiro quadrante,sao positivos,logo

cosa=\sqrt[]{1-(3/5)^2}=\sqrt[]{16/25}=4/5

foi dado que cos b=4/7,vamos encontrar senb

senb=\sqrt[]{1-(4/7)^2}=\sqrt[]{33/49}=\sqrt[]{33}/7

logo

tg(a+b)=(tga+tgb)/(1-tga.tgb)=((sena/cosa))+(senb/cosb))/(1-(sena/cosa).(senb/cosb))=((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7))=
((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7))
=((3/4)+(\sqrt[]{33}/7)/(1-(3.(\sqrt[]{33}))=(84+\sqrt[]{33})/(28.(1-3.\sqrt[]{33}))
creio que as contas estao certas,costumo errar,mas o racicio é esse...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Sáb Abr 10, 2021 16:40

correçao
refiz as contas é encontrei

4.(3+\sqrt[]{33})/(16-3.\sqrt[]{33})

crei estar correta...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.