• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido

exerc.resolvido

Mensagempor adauto martins » Qua Out 23, 2019 20:56

(EN-escola naval-exame?)
sejam f e g duas funçoes reais e derivaveis tais que f'(x)=sen(cos\sqrt[]{x}) e g(x)=f({x}^{2}),
x \in {\Re}_{(*,+)}.pode-se afirmar g'({x}^{2}) é igual a:
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido

Mensagempor adauto martins » Qua Out 23, 2019 21:12

soluçao:

pelos dados do problema,temos que:

g(x)=f({x}^{2})\Rightarrow g'(x)=f'({x}^{2}).({x}^{2})'=g'(x)=f'({x}^{2}).2x,
aqui usando a "regra da cadeia das funçoes compostas"...logo:

g'(x)=f'({x}^{2}).2x=f'(sen(cos\sqrt[]{({x}^{2})}).2x

g'(x)=f'(sen(cosx)).2x...

portanto:

g'({x}^{2})=f'(sen(cos(x^{2})).2{x}^{2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.