• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Seg Set 30, 2019 14:28

(ita-instituto tecnologico da aeronautica-exame de admissao 1953)
partindo de um quadrado {q}_{1},cujo lado mede a metros,considere os quarados
{q}_{2},{q}_{3},{q}_{4},...,{q}_{n} tais que os vertices de cada quadrado sejam os pontos medios
do quadrado anterior.calcular entao,as somas das areas dos quadrados {q}_{1},{q}_{2},{q}_{3},{q}_{4},...,{q}_{n}.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Seg Out 07, 2019 18:04

soluçao:
vamos tomar o lado de {q}_{1} de l\Rightarrow {A}_{{q}_{1}}={l}^{2}
o segundo quadrado {q}_{2},q.tera sua medida na metade do lado de {q}_{1}
tera entao lado {q}_{2}, {l}_{2}=l \sqrt[]{2}/2\Rightarrow {A}_{{q}_{2}}={l}^{2}/2
analogamente {q}_{3},{l}_{3}=l\sqrt[]{2}/4\Rightarrow {A}_{{q}_{3}}={l}^{2}/4
...e assim,sucessivamente,logo a soma S,sera:

S={l}^{2}+{l}^{2}/2+{l}^{2}/4+...+{l}^{2}/({2}^{n})

s={l}^{2}(1+1/2+1/4+...+1/({2}^{n}))

s={l}^{2}(1/(1-1/2))=2.{l}^{2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Qui Out 17, 2019 14:01

a soluçao apresentada dessa questao esta incorreta,pois as somas areas é finita,e eu usei para somas infinitas.
qdo eu tiver a soluçao correta,posto-a.se alguem souber a soluçao por favor,poste-a...
obrigado,adauto martins
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Sex Out 25, 2019 18:05

correçao:
como disse anteriormente essa soma é finita,se consideramos a soma infinita a soluçao apresentada é correta,o raciocinio é o mesmo.entao vamos a soluçao correta dessa questao:
chegamos a soma:

S={l}^{2}(1+(1/2)+(1/4)+...+(1/{2}^{n}))

S={l}^{2}({(1/2)}^{n}-1/(1/2)-1)

S={l}^{2}(2.({2}^{n}-1)/({2}^{n})

S={l}^{2}({2}^{n}-1)/({2}^{n-1}))
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59