• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Álgebra Linear] Exercício (Socorro!)

[Álgebra Linear] Exercício (Socorro!)

Mensagempor Pessoa Estranha » Seg Set 08, 2014 18:54

Boa tarde, pessoal! Preciso de ajuda!

Determinar a projeção ortogonal do vetor \left(1,1,0,-1 \right) \in {\Re}^{4} sobre o subespaço W = \left((x, y, z, w) \in {\Re}^{4}: x - y - z = 0;  z - 2t = 0 \right).

Precisamos, primeiro, encontrar a base ortonormal de W. Consegui encontrar através do Processo de Gram-Schmidt: B = \left(\left( \frac{2}{3}(1, 0, 1, \frac{1}{2})  \right), \left(\frac{3}{\sqrt[]{14}}\left(5, 9, -4, -2 \right) \right) \right). Contudo, ao aplicar v = <(1,1,0,-1),(k1)>k1 + <(1,1,0,-1),(k2)>k2, onde v é a projeção procurada e, k1 e k2 são os vetores da base ortonormal, simplesmente não dá certo! Eu não sei o que há de errado! Por favor, preciso de ajuda!!!!

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Álgebra Linear] Exercício (Socorro!)

Mensagempor young_jedi » Qui Set 11, 2014 11:14

no enunciado você tem W=(x,y,z,w)\in\Re^4:x-y-z;z-2t=0

tem certeza que é t na equação e não w ou vice e versa ?
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Álgebra Linear] Exercício (Socorro!)

Mensagempor Pessoa Estranha » Sex Set 12, 2014 19:16

Obrigada por responder!

Olha, estou verificando aqui o enunciado e, realmente, eu errei na hora de digitar. O que está escrito é: W = \left((x,z,w,t) \in {\Re}^{4}: x - y -z = 0 , z - 2t = 0 \right), mas que também está estranho....

Mesmo assim, obrigada! :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Álgebra Linear] Exercício (Socorro!)

Mensagempor young_jedi » Dom Set 14, 2014 11:55

nesse caso você pode fixar as variaveis x e t e fazer

y=x-2t

e

z=2t

portanto

(x,y,z,t)=(x,x-2t,2t,t)=(x,x,0,0)+(0,-2t,2t,t)

(x,y,z,t)=x(1,1,0,0)+t(0,-2,2,1)

dividindo esses vetores por seus modulos para termos os vetores unitários teríamos a base ortonormal

\left(\frac{1}{\sqrt2}(1,1,0,0)\right),\left(\frac{1}{2}(0,-2,2,1)\right)

agora é só aplicar o procedimento que você estava utilizando
qualquer duvida comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Álgebra Linear] Exercício (Socorro!)

Mensagempor Pessoa Estranha » Dom Set 14, 2014 12:31

Bom, então, pelo processo de Gram-Schmidt, temos:

\left((1,1,0,0),(0,-2,2,1) \right) \rightarrow (k1,k2) a base ortonormal;

k1 = \frac{(1,1,0,0)}{\sqrt[]{<(1,1,0,0),(1,1,0,0)>}}= \frac{(1,1,0,0)}{\sqrt[]{2}} = \frac{1}{\sqrt[]{2}}(1,1,0,0)


k2 = \frac{(0,-2,2,1) - <(0,-2,2,1),(\frac{1}{\sqrt[]{2}}(1,1,0,0)>\frac{1}{\sqrt[]{2}}(1,1,0,0)}{||(0,-2,2,1) - <(0,-2,2,1),(\frac{1}{\sqrt[]{2}}(1,1,0,0)>\frac{1}{\sqrt[]{2}}(1,1,0,0)||} = \frac{(0,-2,2,1)+(1,1,0,0)}{||(0,-2,2,1)+(1,1,0,0)||} = \frac{(1,-1,2,1)}{\sqrt[]{7}}

o k2 não está unitário...
não estou conseguindo achar o meu erro...
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Álgebra Linear] Exercício (Socorro!)

Mensagempor young_jedi » Dom Set 14, 2014 15:20

no meu ver esta correto o k2 é isto mesmo e ele é unitario sim

se você tirar seu modulo você vera que é igual a 1

\left|\left|\frac{1}{\sqrt7}(1,-1,2,1)\right|\right|=\frac{1}{\sqrt7}.\sqrt{1^2+(-1)^2+2^2+1^2}=\frac{\sqrt7}{\sqrt7}=1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Álgebra Linear] Exercício (Socorro!)

Mensagempor Pessoa Estranha » Dom Set 14, 2014 16:16

Ah! Tem razão! :)

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.