• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas Parciais] da função em um ponto indicado

[Derivadas Parciais] da função em um ponto indicado

Mensagempor Marcos07 » Seg Jun 30, 2014 01:57

f(x,y) =arctg (y/x) no ponto p =(x,y), sendo x ? 0 ?


Até compreendo a noção de derivadas parciais, mas tenho extrema dificuldade em exemplos que envolvam arco-tangente (arctg).
Editado pela última vez por Marcos07 em Ter Jul 01, 2014 01:26, em um total de 1 vez.
Marcos07
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 30, 2014 01:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Derivadas Parciais] da função em um ponto indicado

Mensagempor e8group » Seg Jun 30, 2014 11:53

Primeiro vamos determinar a derivada de arctan .(As parciais são análoga ) .

Tome \phi(t) =  arctan(t) , equivalentemente tan(\phi(t) ) = tan( arctan(t)) = t .

Derivando-se com respeito a t , tem-se

[tan( arctan(t))]' =  tan'(arctan(t))  \cdot  \phi'(t) = t' =  1 (no lado esquerdo vc derivada a função tangente e avalia ela em \phi(t) = arctan(t) ) sse

sec^2( arctan(t) ) \cdot \phi'(t) = 1 sse [tan^2(arctan(t)) +1] \cdot  phi'(t) = 1 sse

(t^2 +1) \phi'(t) = 1 sse \phi'(t) = \frac{1}{t^2 +1} .

O raciocínio é análogo também p/ arcsin , arccos , ...., e todas funções as quais admite inversa .

Deixe g qualquer função real de uma variável . Agora derivamos pela regra da composta ,

[\phi(g(t))]' = \phi'(g(t)) \cdot g'(t) = \frac{g'(t)}{1+[g(t)]^2} (*) .

No caso de funções reais de duas variáveis ou mais , a regra acima é verdadeira , pois se g : \Omega \subset \mathbb{R}^n \mapsto \mathbb{R}    ; . Para cada i =1,2,3 \hdots , n ,fixamos x_j sobre todos índices distintos de i entre 1 e n e fazemos x_i variar-se .

Podemos definir uma função real h_i de uma variável a qual depende de x_i ( suponha que classe C^1 , diferenciável ) . Temos

h_i(x_i) = g(x_1, \hdots , x_n) . Logo , derivar-se parcialmente \phi (g(x_1, \hdots , x_n)) com respeito à x_i corresponde a derivar via regra da cadeia a expressão \phi(h_i(x_i)) xom respeito à x_i . Portanto a fórmula (*) é válida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas Parciais] da função em um ponto indicado

Mensagempor Marcos07 » Seg Jun 30, 2014 15:03

Muito obrigado, fico extremamente grato! Me salvou. Explicação perfeita. Valeu!!!
Marcos07
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 30, 2014 01:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59