por Marcos07 » Seg Jun 30, 2014 01:57
f(x,y) =arctg (y/x) no ponto p =(x,y), sendo x ? 0 ?
Até compreendo a noção de derivadas parciais, mas tenho extrema dificuldade em exemplos que envolvam arco-tangente (arctg).
Editado pela última vez por
Marcos07 em Ter Jul 01, 2014 01:26, em um total de 1 vez.
-
Marcos07
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Jun 30, 2014 01:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Seg Jun 30, 2014 11:53
Primeiro vamos determinar a derivada de arctan .(As parciais são análoga ) .
Tome

, equivalentemente

.
Derivando-se com respeito a t , tem-se
![[tan( arctan(t))]' = tan'(arctan(t)) \cdot \phi'(t) = t' = 1 [tan( arctan(t))]' = tan'(arctan(t)) \cdot \phi'(t) = t' = 1](/latexrender/pictures/44e429ead90e1a579c47a69654e55565.png)
(no lado esquerdo vc derivada a função tangente e avalia ela em

) sse

sse
![[tan^2(arctan(t)) +1] \cdot phi'(t) = 1 [tan^2(arctan(t)) +1] \cdot phi'(t) = 1](/latexrender/pictures/55b4dd458d8f28e96b6a6ac1a512eece.png)
sse

sse

.
O raciocínio é análogo também p/ arcsin , arccos , ...., e todas funções as quais admite inversa .
Deixe

qualquer função real de uma variável . Agora derivamos pela regra da composta ,
![[\phi(g(t))]' = \phi'(g(t)) \cdot g'(t) = \frac{g'(t)}{1+[g(t)]^2} (*) [\phi(g(t))]' = \phi'(g(t)) \cdot g'(t) = \frac{g'(t)}{1+[g(t)]^2} (*)](/latexrender/pictures/5921beeb29fc2fe73238f0899abf8db9.png)
.
No caso de funções reais de duas variáveis ou mais , a regra acima é verdadeira , pois se

. Para cada

,fixamos

sobre todos índices distintos de i entre 1 e n e fazemos

variar-se .
Podemos definir uma função real

de uma variável a qual depende de x_i ( suponha que classe C^1 , diferenciável ) . Temos

. Logo , derivar-se parcialmente

com respeito à

corresponde a derivar via regra da cadeia a expressão

xom respeito à x_i . Portanto a fórmula (*) é válida .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Marcos07 » Seg Jun 30, 2014 15:03
Muito obrigado, fico extremamente grato! Me salvou. Explicação perfeita. Valeu!!!
-
Marcos07
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Jun 30, 2014 01:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Derivadas parciais e ponto crítico
por Mell » Dom Jul 07, 2013 10:24
- 1 Respostas
- 1820 Exibições
- Última mensagem por hygorvv

Seg Jul 08, 2013 07:11
Cálculo: Limites, Derivadas e Integrais
-
- [Funções diferenciáveis] em um ponto indicado.
por Marcos07 » Ter Jul 01, 2014 01:55
- 1 Respostas
- 1084 Exibições
- Última mensagem por Man Utd

Qua Jul 02, 2014 22:00
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADAS PARCIAIS e continuidade - função é diferenciável?
por inkz » Seg Nov 26, 2012 20:37
- 3 Respostas
- 5852 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 00:01
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS PARCIAIS] Função definida por partes
por Sohrab » Dom Mai 26, 2013 17:13
- 0 Respostas
- 1324 Exibições
- Última mensagem por Sohrab

Dom Mai 26, 2013 17:13
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas Parciais de função de uma variável real
por Sohrab » Dom Mai 26, 2013 23:16
- 0 Respostas
- 1051 Exibições
- Última mensagem por Sohrab

Dom Mai 26, 2013 23:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.