• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Composta

Função Composta

Mensagempor Lana Brasil » Qua Dez 11, 2013 11:47

Bom dia.
Não consegui resolver essa questão, podem me ajudar por favor?

Dados f(g(x)) = x e g(x) = 2x-1, determine f(x)?
f(2x-1) = x mas não sei o que devo fazer depois porque foi dado g(x). Se fosse f(x) eu saberia continuar.
Agradeço a ajuda.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Composta

Mensagempor e8group » Qua Dez 11, 2013 13:52

Boa tarde ,tente fazer este exercício seguindo as dicas abaixo

viewtopic.php?p=44689#p44689 . Tente concluir ,caso não consiga , diz até aonde conseguiu avançar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Função Composta

Mensagempor Lana Brasil » Qua Dez 11, 2013 14:28

Obrigada pela ajuda. O exemplo que me deu é o que sei fazer. Nesse caso falta o f(x). Por isso não sei fazer.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Composta

Mensagempor e8group » Qua Dez 11, 2013 14:40

Boa tarde . Note que f,g,h,k,j,\delta ,\zeta, \chi, e etc. são só nomes sugestivos para a função .Aquelas dicas se adapta-a este caso . Se novamente não conseguir prosseguir ,post .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Função Composta

Mensagempor Lana Brasil » Qua Dez 11, 2013 14:43

Eu realmente não consegui. Obrigada
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Composta

Mensagempor e8group » Qua Dez 11, 2013 16:00

Você tem razão ,agora que notei ,o que temos é f \circ g( e não g \circ f ) e g(x)=2x-1 .

Observação .

Considere as funções f : A \mapsto B  , g : B \mapsto D (com A,B,D não vazios ). Admita f sobrejetiva , então f admite inversa à direita . Seja g inversa de f à direita .Pela hipótese f \circ g = I_{B} ,onde I_B : B \mapsto B  ; I_B(x) = x é a função identidade .Além disso , se f for também injetora e g for inversa à esquerda de f (ou seja, g \circ f = I_A ) ,então dizemos que f é invertível e g é sua inversa .

Em relação ao exercício , foi dado

g(x) = 2x - 1 e f(g(x)) = x e queremos determinar f .Ora ,pela teoria acima f é sobrejetora e g sua inversa à direita . Agora se considerarmos f injetora e g sua inversa à esquerda ,chegaríamos a conclusão que f= g^{-1} que é a função inversa de g . Agora basta determinar g^{-1}.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Função Composta

Mensagempor Lana Brasil » Qui Dez 12, 2013 09:44

santhiago escreveu:Você tem razão ,agora que notei ,o que temos é f \circ g( e não g \circ f ) e g(x)=2x-1 .

Observação .

Considere as funções f : A \mapsto B  , g : B \mapsto D (com A,B,D não vazios ). Admita f sobrejetiva , então f admite inversa à direita . Seja g inversa de f à direita .Pela hipótese f \circ g = I_{B} ,onde I_B : B \mapsto B  ; I_B(x) = x é a função identidade .Além disso , se f for também injetora e g for inversa à esquerda de f (ou seja, g \circ f = I_A ) ,então dizemos que f é invertível e g é sua inversa .

Em relação ao exercício , foi dado

g(x) = 2x - 1 e f(g(x)) = x e queremos determinar f .Ora ,pela teoria acima f é sobrejetora e g sua inversa à direita . Agora se considerarmos f injetora e g sua inversa à esquerda ,chegaríamos a conclusão que f= g^{-1} que é a função inversa de g . Agora basta determinar g^{-1}.



Obrigada pela sua boa vontade. A explicação teórica está difícil de entender para o pouco que sei de função, por enquanto. Mesmo assim muito obrigada. O que fiz foi isso: g(x)^-1 = (x+1)/2 então g((x+1)/2) = x e f(g(x)) = x então f(x) = (x+1)/2. Está correto??
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Composta

Mensagempor e8group » Qui Dez 12, 2013 20:56

Lana Brasil escreveu:
santhiago escreveu:Você tem razão ,agora que notei ,o que temos é f \circ g( e não g \circ f ) e g(x)=2x-1 .

Observação .

Considere as funções f : A \mapsto B  , g : B \mapsto D (com A,B,D não vazios ). Admita f sobrejetiva , então f admite inversa à direita . Seja g inversa de f à direita .Pela hipótese f \circ g = I_{B} ,onde I_B : B \mapsto B  ; I_B(x) = x é a função identidade .Além disso , se f for também injetora e g for inversa à esquerda de f (ou seja, g \circ f = I_A ) ,então dizemos que f é invertível e g é sua inversa .

Em relação ao exercício , foi dado

g(x) = 2x - 1 e f(g(x)) = x e queremos determinar f .Ora ,pela teoria acima f é sobrejetora e g sua inversa à direita . Agora se considerarmos f injetora e g sua inversa à esquerda ,chegaríamos a conclusão que f= g^{-1} que é a função inversa de g . Agora basta determinar g^{-1}.



Obrigada pela sua boa vontade. A explicação teórica está difícil de entender para o pouco que sei de função, por enquanto. Mesmo assim muito obrigada. O que fiz foi isso: g(x)^-1 = (x+1)/2 então g((x+1)/2) = x e f(g(x)) = x então f(x) = (x+1)/2. Está correto??


Sim ,está correto .
OBS.: No youtube há um canal chamado Nerckie onde-se encontra videos aulas de matemática para ensino médio ,caso possui dúvidas fica a dica .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: