• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral

[Cálculo] Integral

Mensagempor Pessoa Estranha » Seg Out 28, 2013 18:36

Olá.... Gostaria de ajuda para resolver a seguinte integral:

\int_{}^{}{cos}^{4}x dx

Teria como resolver sem usar as fórmulas de recorrência ? Tentei resolver sem usa-las, mas cheguei a um resultado totalmente errado !

Obrigada.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor e8group » Seg Out 28, 2013 19:34

Sim . Comece observando que podemos escrever cos^4 x como [cos^2x]^2 .Para prosseguir , tente reescrever cos^2 x em função de cos(2x) ,logo após , surgirá um termo cos^2(2x) que também pode ser explicitado em termos de cos(4x) .

Alternativamente , suponha que se tenha um termo sob a forma cos(m)cos(n) . Somando as expressões abaixo ,

cos(m+n) = cos(m)cos(n) - sin(m)sin(n)

cos(m-n) =  cos(m)cos(n)  + sin(m)sin(n)

Obterá :

\frac{cos(m+n)+ cos(m-n) }{2}  =  cos(m)cos(n) .

Basta então aplicar a fórmula acima com x = m = n

De forma mais geral é sempre possível transformar produtos da forma \prod_{i} \prod_{j} cos(a_i) sin(b_j) em soma \sum  \alpha_j sin(p_j)  +   \sum \beta_j cos(l_j)

.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Seg Out 28, 2013 20:01

Obrigada ! :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.