por Jhonata » Sex Mai 10, 2013 23:43
Olá pessoal, venho com mais algumas dúvidas sobre o incrível universo da álgebra linear. Bem, como não tenho a quem recorrer no fim de semana, são vocês que sempre salvam minha pele. Então, eis os problemas...
Determine se são subespaços vetoriais de F(R,R):
a) O conjunto das funções continuas;
b){f(x) = asen(x)+2, a pertence a R};
c){f(x)=ax²+b, b, a pertencem a R};
gab: Sim, não, sim
Tenho algumas deduções quanto a isso, mas não sei como provar, portanto, não sei se estou certo... Enfim, peço para que, por gentileza, se puderem me explicar do porque as respostas, ficarei grato.
Abraços!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por e8group » Sáb Mai 25, 2013 13:25
a) O conjunto

das funções contínuas ,de fato é um subespaço vetorial de.Pois ,
i) Existe uma função

identicamente nula

.
ii) Sejam

funções contínuas .Então :

.
iii)

b) O conjunto

não é subespaço vetorial de

.Pois ,tomando-se

(que é um número real) temos que não existe uma função identicamente nula neste conjunto ,não satisfazendo então uma propriedade do subespaço vetorial .
c) Fica como exercício .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qui Ago 01, 2013 00:38
Sei que há muito tempo que respondi este tópico ,hoje vejo que há um erro em relação ao item (b), portanto não faz sentido não corrigi-ló.
Vamos mostrar que a função identicamente nula a qual denotaremos por

não se exprime como

independente da escolha do número

.Se tivéssemos

,então resultaria ,

.Em particular para

teríamos

por outro lado

.
Alternativamente , poderíamos também definir a função

tal que

para todo

em

. Nossa tarefa seria mostrar então que

. Esta é uma outra forma também no meu ponto de vista .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Subespaço Vetorial] Subespaço envolvendo matrizes
por hyge » Qua Mai 02, 2018 17:04
- 2 Respostas
- 10802 Exibições
- Última mensagem por adauto martins

Dom Mai 06, 2018 12:28
Álgebra Linear
-
- [Subespaço Vetorial] Verificar que é o conjunto é subespaço
por anderson_wallace » Seg Dez 30, 2013 17:56
- 3 Respostas
- 4514 Exibições
- Última mensagem por Renato_RJ

Ter Dez 31, 2013 14:00
Álgebra Linear
-
- subespaço vetorial
por leobcastro » Seg Jun 16, 2008 10:18
- 8 Respostas
- 26689 Exibições
- Última mensagem por Heidji

Qua Jan 27, 2010 23:16
Geometria Analítica
-
- Subespaço vetorial
por drakonifor » Qui Mar 17, 2011 16:48
- 3 Respostas
- 3820 Exibições
- Última mensagem por LuizAquino

Qui Mar 17, 2011 18:39
Geometria Analítica
-
- subespaço vetorial
por amr » Seg Abr 18, 2011 10:56
- 3 Respostas
- 5095 Exibições
- Última mensagem por LuizAquino

Seg Abr 18, 2011 19:48
Introdução à Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.