• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida] Subespaço Vetorial de Funções

[Dúvida] Subespaço Vetorial de Funções

Mensagempor Jhonata » Sex Mai 10, 2013 23:43

Olá pessoal, venho com mais algumas dúvidas sobre o incrível universo da álgebra linear. Bem, como não tenho a quem recorrer no fim de semana, são vocês que sempre salvam minha pele. Então, eis os problemas...

Determine se são subespaços vetoriais de F(R,R):

a) O conjunto das funções continuas;

b){f(x) = asen(x)+2, a pertence a R};

c){f(x)=ax²+b, b, a pertencem a R};

gab: Sim, não, sim
Tenho algumas deduções quanto a isso, mas não sei como provar, portanto, não sei se estou certo... Enfim, peço para que, por gentileza, se puderem me explicar do porque as respostas, ficarei grato.

Abraços!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida] Subespaço Vetorial de Funções

Mensagempor e8group » Sáb Mai 25, 2013 13:25

a) O conjunto C^{\circ}(\mathbb{R}) das funções contínuas ,de fato é um subespaço vetorial de.Pois ,

i) Existe uma função 0(t) =0 identicamente nula \in  C^{\circ}(\mathbb{R}) .

ii) Sejam f,g funções contínuas .Então : (f+g)(t)  = f(t) + g(t) \in  C^{\circ}(\mathbb{R}) .

iii) \forall \alpha \in \mathbb{R} \implies  (\alpha \cdot f)(t) = \alpha \cdot f(t) \in C^{\circ}(\mathbb{R})

b) O conjunto \{f(x) = asin(x) + 2 ;   a\in \mathbb{R}\} não é subespaço vetorial de F(\mathbb{R} ; \mathbb{R} ) .Pois ,tomando-se \alpha = 0 (que é um número real) temos que não existe uma função identicamente nula neste conjunto ,não satisfazendo então uma propriedade do subespaço vetorial .

c) Fica como exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Dúvida] Subespaço Vetorial de Funções

Mensagempor e8group » Qui Ago 01, 2013 00:38

Sei que há muito tempo que respondi este tópico ,hoje vejo que há um erro em relação ao item (b), portanto não faz sentido não corrigi-ló.

Vamos mostrar que a função identicamente nula a qual denotaremos por O não se exprime como a sin x + 2 independente da escolha do número a .Se tivéssemos O(t) = a \cdot sin t + 2 ,então resultaria , O(t) = a \cdot sin t + 2 =  0  , \forall  t \in \mathbb{R} .Em particular para t = 0 teríamos O(0) = 0 por outro lado a sin(0) + 2 = a \cdot 0 + 2 =  2 .

Alternativamente , poderíamos também definir a função g : t \mapsto  a sin(t) + 2 tal que g(t) = 0 para todo t em X . Nossa tarefa seria mostrar então que X \subsetneq \mathbb{R} . Esta é uma outra forma também no meu ponto de vista .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?