• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Limite trigonométrico

[Limite] Limite trigonométrico

Mensagempor _bruno94 » Qui Jun 06, 2013 13:39

Pessoal, me ajudem com este limite por favor:

\lim_{x \rightarrow \frac{\pi}{2}}{\frac{1 - sen x}{2x - \pi}}

Obrigado! : )
_bruno94
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 07, 2013 22:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [Limite] Limite trigonométrico

Mensagempor e8group » Qui Jun 06, 2013 21:17

Dicas :

(i) Deixe o número 2 em evidência no denominador ,obtendo 2x -\pi = 2(x-\pi/2) .

(ii) Reescreva sin(x) como sin(x + 0) = sin(x +[\pi/2 - \pi/2]) = sin([x-\pi/2] + \pi/2) =sin(x-\pi/2)cos(\pi/2) + sin(\pi/2) cos(x-\pi/2)  =   cos(x-\pi/2)

(iii) Faça mudança de variável ,x - \pi/2 = w e observe que para x \to \pi/2 tem-se w \to 0 .

(iv) Multiplique o numerador e denominador por 1 + cos(w) e utilize que sin^2(w) + cos^2(w) = 1 .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] Limite trigonométrico

Mensagempor _bruno94 » Sáb Jun 08, 2013 19:31

Valeu, cara. Consegui resolver direitinho. Obrigado. :)
_bruno94
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 07, 2013 22:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}