por Jhenrique » Sex Mai 24, 2013 18:19
Eae gente, blz!?
Vendo este vídeo (no exato instante do link (
http://www.youtube.com/watch?v=kQb6T5MiRLM?t=9m30s)), tem-se a seguinte igualdade:

Essa igualdade é uma convenção física quantitativa, quero dizer, uma simples equação, como:


Ou é uma regra matemática? Quero dizer... a integral sempre resulta num delta não-infinitesimal? Seria este delta um subterfúgio para omitir a adição da constante de integração?
Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Sex Mai 24, 2013 20:10
A constante de integração voce adiciona na integral indefinida. As sua integrais estão indefinidas e a variação que voce esta escrevendo não faz sentido.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhenrique » Sáb Mai 25, 2013 17:13
A variações deltas eu tirei do vídeo que eu postei e do dicionário de Física Houaiss:

Está bem miudinho mas dá para ler, acho...
Sempre fico confuso quando tento fazer "análise sintática" em integrais...
Certos problemas também já me levaram a pensar se

em vez de

...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Achar o [tex]\delta[/tex].
por filipeferminiano » Qui Ago 26, 2010 16:42
- 2 Respostas
- 2085 Exibições
- Última mensagem por filipeferminiano

Sex Ago 27, 2010 00:30
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Determinar um delta
por caiofisico » Sáb Ago 20, 2011 22:38
- 4 Respostas
- 4542 Exibições
- Última mensagem por caiofisico

Seg Ago 22, 2011 19:00
Cálculo: Limites, Derivadas e Integrais
-
- Inequação - 2º grau com delta menor que zero
por renanrdaros » Sex Mar 25, 2011 18:27
- 8 Respostas
- 7446 Exibições
- Última mensagem por johnlaw

Dom Mar 27, 2011 16:33
Álgebra Elementar
-
- Raiz quadrada do discriminante ?Delta
por IgorFilipe » Ter Ago 23, 2011 17:13
- 7 Respostas
- 5479 Exibições
- Última mensagem por LuizAquino

Sáb Ago 27, 2011 13:07
Funções
-
- (Equação de 2° grau) com o Delta sem valor exato
por morcego265 » Sáb Jul 27, 2013 13:48
- 1 Respostas
- 1521 Exibições
- Última mensagem por DanielFerreira

Sáb Ago 03, 2013 08:48
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.