• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integração e Delta

Integração e Delta

Mensagempor Jhenrique » Sex Mai 24, 2013 18:19

Eae gente, blz!?

Vendo este vídeo (no exato instante do link (http://www.youtube.com/watch?v=kQb6T5MiRLM?t=9m30s)), tem-se a seguinte igualdade:

\Delta q=\int dq

Essa igualdade é uma convenção física quantitativa, quero dizer, uma simples equação, como:

\Delta s=\int v\;dt

\Delta v=\int a\;dt

Ou é uma regra matemática? Quero dizer... a integral sempre resulta num delta não-infinitesimal? Seria este delta um subterfúgio para omitir a adição da constante de integração?

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Integração e Delta

Mensagempor Russman » Sex Mai 24, 2013 20:10

A constante de integração voce adiciona na integral indefinida. As sua integrais estão indefinidas e a variação que voce esta escrevendo não faz sentido.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integração e Delta

Mensagempor Jhenrique » Sáb Mai 25, 2013 17:13

A variações deltas eu tirei do vídeo que eu postei e do dicionário de Física Houaiss:

Imagem

Está bem miudinho mas dá para ler, acho...

Sempre fico confuso quando tento fazer "análise sintática" em integrais...

Certos problemas também já me levaram a pensar se \frac{dy}{dx}=dy' em vez de \frac{dy}{dx}=y' ...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)