por fabriel » Seg Mai 06, 2013 01:26
E ai Pessoal, cheguei em uma expressão meio complicada de se resolver.
Não sei se esta correto isso mas, vamos lá:
É dado o exercicio:
Ache a área da superfice gerada pela revolução da curva em torno da eixo-y.

e

,

Resolvendo:
á area será dada por (Aqui eu não detalhei os calculos que eu fiz, apenas resumi para ver se esta certo, se tem como resolver a integral que eu cheguei)
![\int_{0}^{\frac{\pi}{2}}2\pi{e}^{t}sen(t)\sqrt[]{2{e}^{2t}}dt=2\pi\sqrt[]{2}\int_{0}^{\frac{\pi}{2}}{e}^{2t}sen(t)dt \int_{0}^{\frac{\pi}{2}}2\pi{e}^{t}sen(t)\sqrt[]{2{e}^{2t}}dt=2\pi\sqrt[]{2}\int_{0}^{\frac{\pi}{2}}{e}^{2t}sen(t)dt](/latexrender/pictures/8a0eb4fd2ac7b851af34052339bbe60c.png)
e ai que esta o problema, como que resolvo isso

??????
já tentei por partes mas não consegui chegar em nada.
obrigado pela ajuda!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Seg Mai 06, 2013 02:40
Tome

.Esta integral pode ser resolvida aplicando duas vezes a técnica de integração por partes . Integrar tal expressão torna-se achar a solução da equação para

(Verifique ! ) . Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fabriel » Seg Mai 06, 2013 14:05
Eu já tentei fazer desse jeito , mas não consegui. Veja
Temos que resolver essa Integral
Então chamando

e

, logo

e

Então fazendo a integração por partes

=

Agora temos outro problema, essa integral:

Mesmo se eu fizer agora de novo, não ira resolver muita coisa.
chegarei na seguinte expressão:

e mesmo substiuindo isso la na ultima integral que é multiplicada por 2, não resolverá muita coisa...
E isso não irá resolver nada..
Então você chegou num resultado??
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Seg Mai 06, 2013 20:56
Considere :

.
Por integração por partes ,segue-se que :

.
Lembrando que

e

; obtemos

e

.Assim , o integrando

pode ser reescrito como

.Daí ,

.
E novamente por int. por partes ,temos :

.
Logo ,

. E portanto ,

.
Resolvendo e equação para

, resulta :

.

.
Só para confirmar a resposta :
http://www.wolframalpha.com/input/?i=%5 ... %28t%29+dtAgora tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fabriel » Ter Mai 07, 2013 03:05
Que beleza heim, Obrigado ai.
Hoje de noite eu estava na universidade e acabei resolvendo ela tbm!!
Só não entendi a resposta que você me passo? Parece que lá a resposta foi multiplicada por -1...
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Ter Mai 07, 2013 21:12
fabriel escreveu:Que beleza heim, Obrigado ai.
Hoje de noite eu estava na universidade e acabei resolvendo ela tbm!!
Só não entendi a resposta que você me passo? Parece que lá a resposta foi multiplicada por -1...
De nada . Deixando

em evidência segue o resultado fornecido pelo Wolframalpha .As resposta são equivalentes .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Integração por partes
por bencz » Sex Abr 22, 2016 16:18
- 1 Respostas
- 3603 Exibições
- Última mensagem por nakagumahissao

Sáb Abr 23, 2016 23:33
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Integral indefinida...
por luiz_henriquear » Qui Dez 22, 2011 17:40
- 1 Respostas
- 3615 Exibições
- Última mensagem por LuizAquino

Qui Dez 22, 2011 21:58
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Integral indefinida...
por luiz_henriquear » Sáb Dez 31, 2011 14:35
- 2 Respostas
- 1845 Exibições
- Última mensagem por luiz_henriquear

Sáb Dez 31, 2011 15:08
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Duvida na integração Por partes
por fabriel » Sáb Out 06, 2012 18:56
- 1 Respostas
- 1496 Exibições
- Última mensagem por MarceloFantini

Sáb Out 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo] Integral com integração por partes
por karenfreitas » Qui Jun 30, 2016 18:16
- 2 Respostas
- 4927 Exibições
- Última mensagem por karenfreitas

Seg Jul 18, 2016 18:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.