por fabriel » Seg Mai 06, 2013 01:26
E ai Pessoal, cheguei em uma expressão meio complicada de se resolver.
Não sei se esta correto isso mas, vamos lá:
É dado o exercicio:
Ache a área da superfice gerada pela revolução da curva em torno da eixo-y.

e

,

Resolvendo:
á area será dada por (Aqui eu não detalhei os calculos que eu fiz, apenas resumi para ver se esta certo, se tem como resolver a integral que eu cheguei)
![\int_{0}^{\frac{\pi}{2}}2\pi{e}^{t}sen(t)\sqrt[]{2{e}^{2t}}dt=2\pi\sqrt[]{2}\int_{0}^{\frac{\pi}{2}}{e}^{2t}sen(t)dt \int_{0}^{\frac{\pi}{2}}2\pi{e}^{t}sen(t)\sqrt[]{2{e}^{2t}}dt=2\pi\sqrt[]{2}\int_{0}^{\frac{\pi}{2}}{e}^{2t}sen(t)dt](/latexrender/pictures/8a0eb4fd2ac7b851af34052339bbe60c.png)
e ai que esta o problema, como que resolvo isso

??????
já tentei por partes mas não consegui chegar em nada.
obrigado pela ajuda!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Seg Mai 06, 2013 02:40
Tome

.Esta integral pode ser resolvida aplicando duas vezes a técnica de integração por partes . Integrar tal expressão torna-se achar a solução da equação para

(Verifique ! ) . Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fabriel » Seg Mai 06, 2013 14:05
Eu já tentei fazer desse jeito , mas não consegui. Veja
Temos que resolver essa Integral
Então chamando

e

, logo

e

Então fazendo a integração por partes

=

Agora temos outro problema, essa integral:

Mesmo se eu fizer agora de novo, não ira resolver muita coisa.
chegarei na seguinte expressão:

e mesmo substiuindo isso la na ultima integral que é multiplicada por 2, não resolverá muita coisa...
E isso não irá resolver nada..
Então você chegou num resultado??
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Seg Mai 06, 2013 20:56
Considere :

.
Por integração por partes ,segue-se que :

.
Lembrando que

e

; obtemos

e

.Assim , o integrando

pode ser reescrito como

.Daí ,

.
E novamente por int. por partes ,temos :

.
Logo ,

. E portanto ,

.
Resolvendo e equação para

, resulta :

.

.
Só para confirmar a resposta :
http://www.wolframalpha.com/input/?i=%5 ... %28t%29+dtAgora tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fabriel » Ter Mai 07, 2013 03:05
Que beleza heim, Obrigado ai.
Hoje de noite eu estava na universidade e acabei resolvendo ela tbm!!
Só não entendi a resposta que você me passo? Parece que lá a resposta foi multiplicada por -1...
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Ter Mai 07, 2013 21:12
fabriel escreveu:Que beleza heim, Obrigado ai.
Hoje de noite eu estava na universidade e acabei resolvendo ela tbm!!
Só não entendi a resposta que você me passo? Parece que lá a resposta foi multiplicada por -1...
De nada . Deixando

em evidência segue o resultado fornecido pelo Wolframalpha .As resposta são equivalentes .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Integração por partes
por bencz » Sex Abr 22, 2016 16:18
- 1 Respostas
- 3603 Exibições
- Última mensagem por nakagumahissao

Sáb Abr 23, 2016 23:33
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Integral indefinida...
por luiz_henriquear » Qui Dez 22, 2011 17:40
- 1 Respostas
- 3615 Exibições
- Última mensagem por LuizAquino

Qui Dez 22, 2011 21:58
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Integral indefinida...
por luiz_henriquear » Sáb Dez 31, 2011 14:35
- 2 Respostas
- 1845 Exibições
- Última mensagem por luiz_henriquear

Sáb Dez 31, 2011 15:08
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Duvida na integração Por partes
por fabriel » Sáb Out 06, 2012 18:56
- 1 Respostas
- 1496 Exibições
- Última mensagem por MarceloFantini

Sáb Out 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo] Integral com integração por partes
por karenfreitas » Qui Jun 30, 2016 18:16
- 2 Respostas
- 4927 Exibições
- Última mensagem por karenfreitas

Seg Jul 18, 2016 18:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.