• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quadrilátero e ângulos

Quadrilátero e ângulos

Mensagempor Lana Brasil » Qua Abr 17, 2013 16:30

Boa Tarde.

Imagem

Não consegui fazer esse exercício. Como uso o valor do ângulo para chegar no resultado?
Tentei usando que é um quadrilátero então são dois a dois iguais, está errado?
A resposta é "raíz de 7"
Obrigada pela ajuda.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor e8group » Qua Abr 17, 2013 17:34

Observe o triângulo retânguloBCD ,por Pitágoras ,segue BD^2 = BC^2 + CD^2 \therefore BD = \sqrt{1 + 3} = 2 .Por relações trigonométricas é fácil verificar que o segmento BD é perpendicular a AB e portanto o triângulo ABD também é retângulo .Assim ,novamente pelo teorema de Pitágoras ,ele nos fornece que AD^2 = AB^2 + BD^2 =  3 + 4 = 7 ;logo concluímos AD = \sqrt{7} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor Lana Brasil » Qua Abr 17, 2013 19:22

santhiago escreveu:Observe o triângulo retânguloBCD ,por Pitágoras ,segue BD^2 = BC^2 + CD^2 \therefore BD = \sqrt{1 + 3} = 2 .Por relações trigonométricas é fácil verificar que o segmento BD é perpendicular a AB e portanto o triângulo ABD também é retângulo .Assim ,novamente pelo teorema de Pitágoras ,ele nos fornece que AD^2 = AB^2 + BD^2 =  3 + 4 = 7 ;logo concluímos AD = \sqrt{7} .


Obrigada pela ajuda mas meu principal problema é como provar por relações trigonométricas que ele é retângulo. Ainda não aprendi seno, cosseno e tangente.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor e8group » Qui Abr 18, 2013 12:43

Definimos as relações trigonométricas (seno e cosseno) em um triângulo ABC que é retângulo em C da seguinte forma :

Considere :

B\hat{C}A = 90^{\circ} , C\hat{A}B = \theta , C\hat{A}B = \theta , A\hat{B}C =\gamma com \theta e \gamma ângulos agudos (menores que 90°) tais que (**) \gamma + \theta = 90^{\circ} .

Temos :

sin(\gamma) = \frac{CO}{hip} = \frac{AC}{AB}

cos(\gamma) = \frac{CA}{hip} = \frac{AC}{AB}

sin(\theta) = \frac{CO}{hip} = \frac{BC}{AB}

cos(\theta) = \frac{CA}{hip} = \frac{AC}{AB}

Onde :

CO : Cateto oposto (em relação ao ângulo)

CA : Cateto adjacente (em relação ao ângulo)

hip : Hipotenusa (oposto ao ângulo reto)

OBS.: Uma vez que você não aprendeu ainda sobre seno e cosseno ,não vou falar sobre tangente .Além da função chamada tangente ,há outras três que são cotangente ,secante e cossecante .Não se preocupe ,todas elas estão relacionadas com seno e cosseno .

Para mostramos que o triângulo ABD é retângulo .Deveremos mostrar que dois de seus ângulos são agudos e satisfaçam (**) (Veja lá) e que um deles é reto (90^{\cric} .) .Para esta questão,se mostrarmos que o ângulo E\hat{B}D vale 30^{\circ} poderemos concluir que A\hat{B}D = 90^{\circ} uma vez que A\hat{B}D = 60^{\circ} + E\hat{B}D .Bom ,é isto que vamos fazer .Veja que E\hat{B}D  = 90^{\circ} - C\hat{B}D (Por quê ?) e que sin(C\hat{B}D) = \frac{CO}{hip} =\frac{CD}{BD} .

Como foi dado que CD =\sqrt{3} e no post anterior calculamos BD = 2 .Então ,

sin(C\hat{B}D) = \frac{\sqrt{3}}{2} e portanto ,C\hat{B}D = 60^{\circ} .Lembrando que E\hat{B}D  = 90^{\circ} - C\hat{B}D ,resulta E\hat{B}D  = 30^{\circ} .Assim ,demonstramos que o ângulo A\hat{B}D é reto.Além disso ,D\hat{A}B e B\hat{D}A são ângulos agudos e D\hat{A}B  +   B\hat{D}A = 90^{\circ} .Logo ,segue o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor Lana Brasil » Qui Abr 18, 2013 15:57

santhiago escreveu:Definimos as relações trigonométricas (seno e cosseno) em um triângulo ABC que é retângulo em C da seguinte forma :

Considere :

B\hat{C}A = 90^{\circ} , C\hat{A}B = \theta , C\hat{A}B = \theta , A\hat{B}C =\gamma com \theta e \gamma ângulos agudos (menores que 90°) tais que (**) \gamma + \theta = 90^{\circ} .

Temos :

sin(\gamma) = \frac{CO}{hip} = \frac{AC}{AB}

cos(\gamma) = \frac{CA}{hip} = \frac{AC}{AB}

sin(\theta) = \frac{CO}{hip} = \frac{BC}{AB}

cos(\theta) = \frac{CA}{hip} = \frac{AC}{AB}

Onde :

CO : Cateto oposto (em relação ao ângulo)

CA : Cateto adjacente (em relação ao ângulo)

hip : Hipotenusa (oposto ao ângulo reto)

OBS.: Uma vez que você não aprendeu ainda sobre seno e cosseno ,não vou falar sobre tangente .Além da função chamada tangente ,há outras três que são cotangente ,secante e cossecante .Não se preocupe ,todas elas estão relacionadas com seno e cosseno .

Para mostramos que o triângulo ABD é retângulo .Deveremos mostrar que dois de seus ângulos são agudos e satisfaçam (**) (Veja lá) e que um deles é reto (90^{\cric} .) .Para esta questão,se mostrarmos que o ângulo E\hat{B}D vale 30^{\circ} poderemos concluir que A\hat{B}D = 90^{\circ} uma vez que A\hat{B}D = 60^{\circ} + E\hat{B}D .Bom ,é isto que vamos fazer .Veja que E\hat{B}D  = 90^{\circ} - C\hat{B}D (Por quê ?) e que sin(C\hat{B}D) = \frac{CO}{hip} =\frac{CD}{BD} .

Como foi dado que CD =\sqrt{3} e no post anterior calculamos BD = 2 .Então ,

sin(C\hat{B}D) = \frac{\sqrt{3}}{2} e portanto ,C\hat{B}D = 60^{\circ} .Lembrando que E\hat{B}D  = 90^{\circ} - C\hat{B}D ,resulta E\hat{B}D  = 30^{\circ} .Assim ,demonstramos que o ângulo A\hat{B}D é reto.Além disso ,D\hat{A}B e B\hat{D}A são ângulos agudos e D\hat{A}B  +   B\hat{D}A = 90^{\circ} .Logo ,segue o resultado .



Santhiago adorei sua explicação, entendi tudo. Muito Obrigada.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?