• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quadrilátero e ângulos

Quadrilátero e ângulos

Mensagempor Lana Brasil » Qua Abr 17, 2013 16:30

Boa Tarde.

Imagem

Não consegui fazer esse exercício. Como uso o valor do ângulo para chegar no resultado?
Tentei usando que é um quadrilátero então são dois a dois iguais, está errado?
A resposta é "raíz de 7"
Obrigada pela ajuda.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor e8group » Qua Abr 17, 2013 17:34

Observe o triângulo retânguloBCD ,por Pitágoras ,segue BD^2 = BC^2 + CD^2 \therefore BD = \sqrt{1 + 3} = 2 .Por relações trigonométricas é fácil verificar que o segmento BD é perpendicular a AB e portanto o triângulo ABD também é retângulo .Assim ,novamente pelo teorema de Pitágoras ,ele nos fornece que AD^2 = AB^2 + BD^2 =  3 + 4 = 7 ;logo concluímos AD = \sqrt{7} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor Lana Brasil » Qua Abr 17, 2013 19:22

santhiago escreveu:Observe o triângulo retânguloBCD ,por Pitágoras ,segue BD^2 = BC^2 + CD^2 \therefore BD = \sqrt{1 + 3} = 2 .Por relações trigonométricas é fácil verificar que o segmento BD é perpendicular a AB e portanto o triângulo ABD também é retângulo .Assim ,novamente pelo teorema de Pitágoras ,ele nos fornece que AD^2 = AB^2 + BD^2 =  3 + 4 = 7 ;logo concluímos AD = \sqrt{7} .


Obrigada pela ajuda mas meu principal problema é como provar por relações trigonométricas que ele é retângulo. Ainda não aprendi seno, cosseno e tangente.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor e8group » Qui Abr 18, 2013 12:43

Definimos as relações trigonométricas (seno e cosseno) em um triângulo ABC que é retângulo em C da seguinte forma :

Considere :

B\hat{C}A = 90^{\circ} , C\hat{A}B = \theta , C\hat{A}B = \theta , A\hat{B}C =\gamma com \theta e \gamma ângulos agudos (menores que 90°) tais que (**) \gamma + \theta = 90^{\circ} .

Temos :

sin(\gamma) = \frac{CO}{hip} = \frac{AC}{AB}

cos(\gamma) = \frac{CA}{hip} = \frac{AC}{AB}

sin(\theta) = \frac{CO}{hip} = \frac{BC}{AB}

cos(\theta) = \frac{CA}{hip} = \frac{AC}{AB}

Onde :

CO : Cateto oposto (em relação ao ângulo)

CA : Cateto adjacente (em relação ao ângulo)

hip : Hipotenusa (oposto ao ângulo reto)

OBS.: Uma vez que você não aprendeu ainda sobre seno e cosseno ,não vou falar sobre tangente .Além da função chamada tangente ,há outras três que são cotangente ,secante e cossecante .Não se preocupe ,todas elas estão relacionadas com seno e cosseno .

Para mostramos que o triângulo ABD é retângulo .Deveremos mostrar que dois de seus ângulos são agudos e satisfaçam (**) (Veja lá) e que um deles é reto (90^{\cric} .) .Para esta questão,se mostrarmos que o ângulo E\hat{B}D vale 30^{\circ} poderemos concluir que A\hat{B}D = 90^{\circ} uma vez que A\hat{B}D = 60^{\circ} + E\hat{B}D .Bom ,é isto que vamos fazer .Veja que E\hat{B}D  = 90^{\circ} - C\hat{B}D (Por quê ?) e que sin(C\hat{B}D) = \frac{CO}{hip} =\frac{CD}{BD} .

Como foi dado que CD =\sqrt{3} e no post anterior calculamos BD = 2 .Então ,

sin(C\hat{B}D) = \frac{\sqrt{3}}{2} e portanto ,C\hat{B}D = 60^{\circ} .Lembrando que E\hat{B}D  = 90^{\circ} - C\hat{B}D ,resulta E\hat{B}D  = 30^{\circ} .Assim ,demonstramos que o ângulo A\hat{B}D é reto.Além disso ,D\hat{A}B e B\hat{D}A são ângulos agudos e D\hat{A}B  +   B\hat{D}A = 90^{\circ} .Logo ,segue o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Quadrilátero e ângulos

Mensagempor Lana Brasil » Qui Abr 18, 2013 15:57

santhiago escreveu:Definimos as relações trigonométricas (seno e cosseno) em um triângulo ABC que é retângulo em C da seguinte forma :

Considere :

B\hat{C}A = 90^{\circ} , C\hat{A}B = \theta , C\hat{A}B = \theta , A\hat{B}C =\gamma com \theta e \gamma ângulos agudos (menores que 90°) tais que (**) \gamma + \theta = 90^{\circ} .

Temos :

sin(\gamma) = \frac{CO}{hip} = \frac{AC}{AB}

cos(\gamma) = \frac{CA}{hip} = \frac{AC}{AB}

sin(\theta) = \frac{CO}{hip} = \frac{BC}{AB}

cos(\theta) = \frac{CA}{hip} = \frac{AC}{AB}

Onde :

CO : Cateto oposto (em relação ao ângulo)

CA : Cateto adjacente (em relação ao ângulo)

hip : Hipotenusa (oposto ao ângulo reto)

OBS.: Uma vez que você não aprendeu ainda sobre seno e cosseno ,não vou falar sobre tangente .Além da função chamada tangente ,há outras três que são cotangente ,secante e cossecante .Não se preocupe ,todas elas estão relacionadas com seno e cosseno .

Para mostramos que o triângulo ABD é retângulo .Deveremos mostrar que dois de seus ângulos são agudos e satisfaçam (**) (Veja lá) e que um deles é reto (90^{\cric} .) .Para esta questão,se mostrarmos que o ângulo E\hat{B}D vale 30^{\circ} poderemos concluir que A\hat{B}D = 90^{\circ} uma vez que A\hat{B}D = 60^{\circ} + E\hat{B}D .Bom ,é isto que vamos fazer .Veja que E\hat{B}D  = 90^{\circ} - C\hat{B}D (Por quê ?) e que sin(C\hat{B}D) = \frac{CO}{hip} =\frac{CD}{BD} .

Como foi dado que CD =\sqrt{3} e no post anterior calculamos BD = 2 .Então ,

sin(C\hat{B}D) = \frac{\sqrt{3}}{2} e portanto ,C\hat{B}D = 60^{\circ} .Lembrando que E\hat{B}D  = 90^{\circ} - C\hat{B}D ,resulta E\hat{B}D  = 30^{\circ} .Assim ,demonstramos que o ângulo A\hat{B}D é reto.Além disso ,D\hat{A}B e B\hat{D}A são ângulos agudos e D\hat{A}B  +   B\hat{D}A = 90^{\circ} .Logo ,segue o resultado .



Santhiago adorei sua explicação, entendi tudo. Muito Obrigada.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.