• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada funções trigonométricas

Derivada funções trigonométricas

Mensagempor samysoares » Seg Mar 04, 2013 13:38

f(x) = 2xcosxtgx
f'(x)=?

não consigo resolver essa questão, o meu resultado não bate com o gabarito de jeito nenhum. Por favor, se puder resolver passo a passo.
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor marinalcd » Seg Mar 04, 2013 14:26

Consideremos uma função do tipo a.b.c
Para derivarmos esse produto, utilizaremos a regra do produto, ou seja:
f ' (x) = a'.b.c + a.b'.c + a.b.c'

Então:
f(x) = 2x.cosx.tgx

f ' (x) = (2x)'.cos xtg x + 2x(cos x)'.tg x + 2x.cos x.(tg x)'
f ' (x) = 2cos x.tg x + 2x (-sen x).tg x+ 2x.cos x.sec² x
f ' (x) = 2.cos x .tg x + -2x.sen x. tg x + 2x. cos x. sec² x

Espero ter ajudado!!!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor samysoares » Qua Mar 06, 2013 12:46

Infelizmente o gabarito não parou por aí, o resultado está simplificado, Mas obrigada, acho que consigo simplificar!
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor e8group » Qua Mar 06, 2013 13:51

Boa tarde .Há outra forma também, simplificando f ,ficando apenas com f(x) = 2x sin(x) .


Visto que tan(x) = sin(x)/cos(x) ,então f(x) = 2x cos(x) tan(x) = 2x cos(x) sin(x)/cos(x) = 2x \cdot sin(x) .

Pela regra do produto , f'(x) = [2x \cdot sin(x)]' = (2x)' \cdot sin(x) + 2x \cdot( sin(x))' ;tente concluir ,talvez o desenvlovimento acima está no formato do seu gabarito ,se não ,post !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor marinalcd » Sex Mar 08, 2013 15:29

Poste o gabarito para a gente!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59