• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Conjuntos] Exercícios

[Conjuntos] Exercícios

Mensagempor GrazielaSilva » Sex Fev 01, 2013 10:50

4) FGV-SP - Sejam A, B e C conjuntos finitos. O número de elementos de A Ç B é 30, o número de elementos de A Ç C é 20 e o número de elementos de A Ç B Ç C é 15.
Então o número de elementos de A Ç (B È C) é igual a:
*a)35
b)15
c)50
d)45
e)20

4) FEI/SP - Um teste de literatura, com 5 alternativas em que uma única é verdadeira, referindo-se à data de nascimento de um famoso escritor, apresenta as seguintes alternativas:
a)século XIX
b)século XX
c)antes de 1860
d)depois de 1830
e)nenhuma das anteriores

Pode-se garantir que a resposta correta é:
a)a
b)b
c)c
d)d
e)e
GrazielaSilva
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 27, 2012 12:56
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Conjuntos] Exercícios

Mensagempor Cleyson007 » Seg Fev 04, 2013 09:52

Bom dia Graziela!

Por favor, poste uma dúvida por tópico. Ok?

1ª Questão: A ? (B U C) = A ? B + A ? C – A ? B ? C = 30 + 20 – 15 = 35

2ª Questão: Essa é complicadinha hein.. Encontrei ela resolvida, veja se te ajuda: http://br.answers.yahoo.com/question/in ... 615AAdHk7a

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}