• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação irracional] Determinação das raízes reais

[Equação irracional] Determinação das raízes reais

Mensagempor Gustavo Gomes » Qui Jan 31, 2013 22:03

Olá, pessoal.

Calculei as raízes da seguinte equação: \sqrt[]{3x-2}=\sqrt[]{x} + 2:

{\left(\sqrt[]{3x-2} \right)}^{2}={\left(\sqrt[]{x}+2 \right)}^{2}\Rightarrow{x}^{2}-10x+9=0

Desse modo, as raízes reais seriam 9 e 1. No entanto, a equação não é satisfeita para x = 1.

Não entendi porque o 1 não corresponde à raiz real da referida equação.....

Aguardo. Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Equação irracional] Determinação das raízes reais

Mensagempor DanielFerreira » Qui Jan 31, 2013 22:26

Gustavo,
deverás substituir os valores de x que encontraste na equação inicial, isto é, substituir 1 e 9 em \sqrt{3x - 2} = \sqrt{x} + 2, e, verificar se é verdadeiro/falso.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação irracional] Determinação das raízes reais

Mensagempor Russman » Sex Fev 01, 2013 04:02

Você não sabia resolver a 1° equação. Então, como em quase tudo na Matemática, você transforma(não no sentido matemático do termo) esse problema em outro que você sabe resolver! Mas veja que mesmo a 2° equação sendo obtida pela manipulação da 1° elas são equações DIFERENTES que, via razões óbvias, possuem alguma ou algumas raízes em comum.

Assim, x=a pode solucionar a 2° forma da equação mas não a 1°. Você deve obter as soluções da 2° e testar na equação 1° e verificar qual delas que a satisfazem.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.