• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Polinômios] Prove que ...

[Polinômios] Prove que ...

Mensagempor e8group » Sex Dez 21, 2012 11:26

Suponha que p(x) = a_0x^n + a_1 x^{n-1} + \hdots + a_{n-1} x + a_n seja um polinômio de grau n com coeficientes inteiros , isto é , a_0 \neq 0 , a_1, a_2, \hdots , a_n são números inteiros .Seja \alpha um número inteiro .Prove que se \alpha for raiz de p(x) ,então \alpha será divisor do termo independente a_n .

Solução :

p(\alpha) = 0  \implies  a_n + \sum_{k=0}^{n-1} a_k(\alpha)^{n-k} = 0 \implies  a_n  =   - \sum_{k=0}^{n-1} a_k(\alpha)^{n-k}

Como \alpha \neq 0  , \exists  \alpha^{-1} . Então ,

\frac{a_n}{\alpha} =  - \sum_{k=0}^{n-1} a_k(\alpha)^{n-(k+1)} = - (a_0 \alpha^{n-1} + a_1 \alpha^{n-2} + \hdots + a_{n-2}\alpha + a_{n-1} ) .

Se a_0 é inteiro , a_0 \alpha^{n-1} resulta um número inteiro , pois \alpha é inteiro \implies  \alpha \cdot \alpha \cdot \hdots \cdot \alpha (\text{n-1 vezes } ) é inteiro . Assim, a_k \alpha ^{n-k} é inteiro para k = 1,2,3,\hdots , n-1 .Logo , - \sum_{k=0}^{n-1} a_k(\alpha)^{n-(k+1)} = - (a_0 \alpha^{n-1} + a_1 \alpha^{n-2} + \hdots + a_{n-2}\alpha + a_{n-1} ) é um número inteiro e portanto a_n é divisível por \alpha .

A solução estar certa ? Ou não ? Se não ,como poderia provar isto ?

Agradeço desde já !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Polinômios] Prove que ...

Mensagempor e8group » Sex Dez 21, 2012 12:07

Pessoal cometi um erro sutil em assumir \alpha \neq 0 .Pois \alpha é inteiro . Vamos supor então que a solução acima vale somente para \alpha inteiro não nulo . Este será o primeiro caso . E no segundo caso ,vamos assumir que \alpha = 0 .

Assim temos ,

caso 1 : ( \alpha \neq 0)

Corresponde a minha primeira solução ...

caso 2( \alpha = 0 )

Temos que provar ,peço ajuda de vc's .

Agora estar coerente (eu acho ).

Se a resposta acima estiver correta , como ficaria o caso 2 ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Polinômios] Prove que ...

Mensagempor young_jedi » Sex Dez 21, 2012 15:08

acho que seu pensamento esta certo sim

no entanto para \alpha=0, acho que não se aplica

mesmo porque em um polinomio de grau qualquer, se 0 é raiz deste polinomio, então ele não possui termo independente, ou seja todos os termos tem uma potencia de x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Polinômios] Prove que ...

Mensagempor e8group » Sáb Dez 22, 2012 10:46

young_jedi ,muito obrigado pela ajuda .Como o enunciado diz que \alpha é inteiro e 0 é inteiro .Vou utilizar o seu argumento ,se \alpha = 0 o termo independente é nulo .Logo ,neste caso não se aplica .Além disso , estaríamos efetuando a divisão "0/0" .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D