• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função inversa, Solução

Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 00:29

boa noite!

preciso de ajuda, não estou conseguindo resolver essa equação simples preciso saber a função inversa f-¹(x) da função f(x):
X - 2
3
com resolução bem explicada se não for pedir muito, pois tenho dificuldade na troca de sinal e multiplicação em (-1)
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando

Re: Função inversa, Solução

Mensagempor MarceloFantini » Ter Nov 06, 2012 01:32

Escreva x em função de y. Se y = \frac{x-2}{3}, então multiplicando ambos lados por 3 segue que 3y = x-2. Somando 2 à ambos lados temos finalmente que 3y +2 = x, portanto essa é a função inversa. Para verificar, faça as composições f^{-1}(f(x)) = f(f^{-1}(x)) e veja se são iguais à x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 06:15

humm.. Só uma dúvida quando ficou 3y=x-2 você "passou" o -2 depois do sinal de igual isolado a variável que é X ?

3y = x - 2

3y + 2 = x
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando

Re: Função inversa, Solução

Mensagempor MarceloFantini » Ter Nov 06, 2012 06:22

Não sei se entendi qual é a sua dúvida, mas sim, eu somei 2 dos dois lados. O que acontece é o seguinte, somando 2 de ambos lados temos 3y +2 = x -2 +2 = x + (2-2) = x + 0 = x, efetivamente isolando o x, como queríamos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 08:08

É isso mesmo, minha dúvida, está tudo claro agora.
Obrigado
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59