• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função inversa, Solução

Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 00:29

boa noite!

preciso de ajuda, não estou conseguindo resolver essa equação simples preciso saber a função inversa f-¹(x) da função f(x):
X - 2
3
com resolução bem explicada se não for pedir muito, pois tenho dificuldade na troca de sinal e multiplicação em (-1)
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando

Re: Função inversa, Solução

Mensagempor MarceloFantini » Ter Nov 06, 2012 01:32

Escreva x em função de y. Se y = \frac{x-2}{3}, então multiplicando ambos lados por 3 segue que 3y = x-2. Somando 2 à ambos lados temos finalmente que 3y +2 = x, portanto essa é a função inversa. Para verificar, faça as composições f^{-1}(f(x)) = f(f^{-1}(x)) e veja se são iguais à x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 06:15

humm.. Só uma dúvida quando ficou 3y=x-2 você "passou" o -2 depois do sinal de igual isolado a variável que é X ?

3y = x - 2

3y + 2 = x
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando

Re: Função inversa, Solução

Mensagempor MarceloFantini » Ter Nov 06, 2012 06:22

Não sei se entendi qual é a sua dúvida, mas sim, eu somei 2 dos dois lados. O que acontece é o seguinte, somando 2 de ambos lados temos 3y +2 = x -2 +2 = x + (2-2) = x + 0 = x, efetivamente isolando o x, como queríamos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 08:08

É isso mesmo, minha dúvida, está tudo claro agora.
Obrigado
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.