• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INEQUAÇÃO] ajuda

[INEQUAÇÃO] ajuda

Mensagempor danielrodrigues » Seg Nov 05, 2012 19:50

Olá pessoal eu novamente...tem outro exercicio de inequação que nao consigo resolver...por favor se puderem me ajudar..
{\sqrt[5]{1,1}}^{{x}^{2}+x+1} < 1
tentei resolver mas nao saiu nada...
Obrigado!!
Editado pela última vez por danielrodrigues em Seg Nov 05, 2012 21:38, em um total de 1 vez.
danielrodrigues
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 08, 2012 11:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [INEQUAÇÃO] ajuda

Mensagempor MarceloFantini » Seg Nov 05, 2012 21:08

Você tem certeza que a inequação é (\sqrt[5]{1,1})^{x^2 +x+1} \leq 3?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [INEQUAÇÃO] ajuda

Mensagempor danielrodrigues » Seg Nov 05, 2012 21:37

cara foi mal!!! é assim
(\sqrt[5]{1,1})^{x^2 +x+1} < 1
danielrodrigues
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 08, 2012 11:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [INEQUAÇÃO] ajuda

Mensagempor MarceloFantini » Seg Nov 05, 2012 22:15

Bom, sabemos que qualquer número real diferente de zero elevado a zero é um, e como a função exponencial é estritamente crescente, isto significa que para que (\sqrt[5]{1,1})^{x^2 +x +1} seja menor que um devemos ter que o expoente é menor que zero, portanto x^2 +x + 1<0. Calcule o discriminante e conclua.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [INEQUAÇÃO] ajuda

Mensagempor danielrodrigues » Ter Nov 06, 2012 00:11

meu amigo...o discriminante deu negativo... é isso mesmo?
DELTA = -3
danielrodrigues
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 08, 2012 11:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [INEQUAÇÃO] ajuda

Mensagempor MarceloFantini » Ter Nov 06, 2012 01:06

Sim, é isto mesmo. Como o coeficiente da maior potência é positivo significa que a parábola tem "boca para cima", ou seja, nunca é negativa. Portanto, o conjunto solução é o vazio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}