por fabriel » Sex Out 05, 2012 02:47
E ai Pessoal empaquei em uma aqui. É dada a Integral:
![\int_{}^{}\frac{dx}{\sqrt[]{1+\sqrt[3]{x}}} \int_{}^{}\frac{dx}{\sqrt[]{1+\sqrt[3]{x}}}](/latexrender/pictures/30511c93c2a14b9c61e0048ba0601936.png)
Então devo chamar:
![u=\sqrt[3]{x} u=\sqrt[3]{x}](/latexrender/pictures/dd75434167bc7231f965d49667e1c4ea.png)
então:
![du=\frac{1}{3\sqrt[3]{{x}^{2}}}dx du=\frac{1}{3\sqrt[3]{{x}^{2}}}dx](/latexrender/pictures/aa3f983faf31910d2b87675bb21eb6e1.png)
só q fica complicado na hora da substituição
Então esta certo esse caminho?
ou devo fazer outro tipo de substituição??
obrigado!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por LuizAquino » Sex Out 05, 2012 09:57
fabriel escreveu:E ai Pessoal empaquei em uma aqui. É dada a Integral:
![\int_{}^{}\frac{dx}{\sqrt[]{1+\sqrt[3]{x}}} \int_{}^{}\frac{dx}{\sqrt[]{1+\sqrt[3]{x}}}](/latexrender/pictures/30511c93c2a14b9c61e0048ba0601936.png)
Então devo chamar:
![u=\sqrt[3]{x} u=\sqrt[3]{x}](/latexrender/pictures/dd75434167bc7231f965d49667e1c4ea.png)
então:
![du=\frac{1}{3\sqrt[3]{{x}^{2}}}dx du=\frac{1}{3\sqrt[3]{{x}^{2}}}dx](/latexrender/pictures/aa3f983faf31910d2b87675bb21eb6e1.png)
só q fica complicado na hora da substituição
Então esta certo esse caminho?
ou devo fazer outro tipo de substituição??
Use a substituição
![u = 1 + \sqrt[3]{x} u = 1 + \sqrt[3]{x}](/latexrender/pictures/d2064e3d1d0200fecff8ac86521f61af.png)
e
![du = \frac{1}{3\sqrt[3]{x^2}}\,dx du = \frac{1}{3\sqrt[3]{x^2}}\,dx](/latexrender/pictures/517fdbae39ce2626a2c64d7d8aaedb2a.png)
.
Como você usou
![u=1 + \sqrt[3]{x} u=1 + \sqrt[3]{x}](/latexrender/pictures/0cc91a530cb4e2c28072b7439bba868e.png)
, então você pode dizer que
![(u - 1)^2 = \sqrt[3]{x^2} (u - 1)^2 = \sqrt[3]{x^2}](/latexrender/pictures/f3cb7610fded051d96e68cf7e4f29194.png)
. Desse modo, você pode escrever que

.
Portanto, você terá que:
![\int\frac{1}{\sqrt{1+\sqrt[3]{x}}}\,dx = \int\frac{3(u - 1)^2}{\sqrt{u}}\,du \int\frac{1}{\sqrt{1+\sqrt[3]{x}}}\,dx = \int\frac{3(u - 1)^2}{\sqrt{u}}\,du](/latexrender/pictures/9a645fd8577c56971c0897a1ab150b01.png)

Agora tente prosseguir a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por fabriel » Sex Out 05, 2012 13:20
Obrigado Luiz, calculei aqui:

desse tipo que está ai eu posso simplifica o resultado? Se não fica por isso mesmo:
![\frac{6}{5}\sqrt[]{1+{\sqrt[3]{x}}^{5}}-\frac{12}{3}\sqrt[]{1+{\sqrt[3]{x}}^{3}}+2\sqrt[]{1+\sqrt[3]{x}}+C \frac{6}{5}\sqrt[]{1+{\sqrt[3]{x}}^{5}}-\frac{12}{3}\sqrt[]{1+{\sqrt[3]{x}}^{3}}+2\sqrt[]{1+\sqrt[3]{x}}+C](/latexrender/pictures/0f47a64036b7d9b3190bc4a0beb874e0.png)
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por LuizAquino » Sex Out 05, 2012 15:23
fabriel escreveu:Obrigado Luiz, calculei aqui:

Errado. O correto seria:

fabriel escreveu:desse tipo que está ai eu posso simplifica o resultado?
Não dá para simplificar muita coisa.
fabriel escreveu:Se não fica por isso mesmo:
![\frac{6}{5}\sqrt[]{1+{\sqrt[3]{x}}^{5}}-\frac{12}{3}\sqrt[]{1+{\sqrt[3]{x}}^{3}}+2\sqrt[]{1+\sqrt[3]{x}}+C \frac{6}{5}\sqrt[]{1+{\sqrt[3]{x}}^{5}}-\frac{12}{3}\sqrt[]{1+{\sqrt[3]{x}}^{3}}+2\sqrt[]{1+\sqrt[3]{x}}+C](/latexrender/pictures/0f47a64036b7d9b3190bc4a0beb874e0.png)
Errado. O correto seria:
![\frac{6}{5}\sqrt{\left(1+\sqrt[3]{x}\right)^5} - 4\sqrt{\left(1+\sqrt[3]{x}\right)^3} + 6\sqrt{1+\sqrt[3]{x}} + C \frac{6}{5}\sqrt{\left(1+\sqrt[3]{x}\right)^5} - 4\sqrt{\left(1+\sqrt[3]{x}\right)^3} + 6\sqrt{1+\sqrt[3]{x}} + C](/latexrender/pictures/2942f176ce43428472ae3e699a292e65.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por fabriel » Sex Out 05, 2012 17:22
ha sim errei nesse detalhe, agora q fui ver:
![3\int_{}^{}{u}^{-\frac{1}{2}}du=3\left[{2u}^{\frac{1}{2}}+C1 \right]=6{u}^{\frac{1}{2}}+C1 3\int_{}^{}{u}^{-\frac{1}{2}}du=3\left[{2u}^{\frac{1}{2}}+C1 \right]=6{u}^{\frac{1}{2}}+C1](/latexrender/pictures/8e9dbda58a93121adb0e312515eed9ad.png)
obrigado de novo!
Tenha um Bom fim de semana!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [integral indefinida] qual o processo de resolução a usar
por armando » Seg Jul 29, 2013 23:53
- 11 Respostas
- 5989 Exibições
- Última mensagem por Man Utd

Ter Jul 30, 2013 20:09
Cálculo: Limites, Derivadas e Integrais
-
- qual é a integral indefinida passo-a-passo de:
por Raphison » Seg Dez 01, 2014 10:53
- 2 Respostas
- 1508 Exibições
- Última mensagem por Raphison

Qua Dez 03, 2014 08:42
Cálculo: Limites, Derivadas e Integrais
-
- Integral indefinida
por gdarius » Ter Mar 16, 2010 15:57
- 5 Respostas
- 5350 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 31, 2012 19:32
Cálculo: Limites, Derivadas e Integrais
-
- Integral indefinida
por CrazzyVi » Ter Ago 17, 2010 21:41
- 1 Respostas
- 2616 Exibições
- Última mensagem por Lucio Carvalho

Qua Ago 18, 2010 08:27
Cálculo: Limites, Derivadas e Integrais
-
- Integral indefinida
por felipealves » Ter Jun 21, 2011 11:48
- 3 Respostas
- 3225 Exibições
- Última mensagem por felipealves

Ter Jun 21, 2011 20:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.