• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL INDEFINIDA] Qual será aSubstituição?

[INTEGRAL INDEFINIDA] Qual será aSubstituição?

Mensagempor fabriel » Sex Out 05, 2012 02:47

E ai Pessoal empaquei em uma aqui. É dada a Integral:
\int_{}^{}\frac{dx}{\sqrt[]{1+\sqrt[3]{x}}}
Então devo chamar:
u=\sqrt[3]{x}
então:
du=\frac{1}{3\sqrt[3]{{x}^{2}}}dx
só q fica complicado na hora da substituição
Então esta certo esse caminho?
ou devo fazer outro tipo de substituição??
obrigado!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL INDEFINIDA] Qual será aSubstituição?

Mensagempor LuizAquino » Sex Out 05, 2012 09:57

fabriel escreveu:E ai Pessoal empaquei em uma aqui. É dada a Integral:
\int_{}^{}\frac{dx}{\sqrt[]{1+\sqrt[3]{x}}}
Então devo chamar:
u=\sqrt[3]{x}
então:
du=\frac{1}{3\sqrt[3]{{x}^{2}}}dx
só q fica complicado na hora da substituição
Então esta certo esse caminho?
ou devo fazer outro tipo de substituição??


Use a substituição u = 1 + \sqrt[3]{x} e du = \frac{1}{3\sqrt[3]{x^2}}\,dx .

Como você usou u=1 + \sqrt[3]{x}, então você pode dizer que (u - 1)^2 = \sqrt[3]{x^2} . Desse modo, você pode escrever que 3(u-1)^2 du = dx .

Portanto, você terá que:

\int\frac{1}{\sqrt{1+\sqrt[3]{x}}}\,dx = \int\frac{3(u - 1)^2}{\sqrt{u}}\,du

= \int 3u^{\frac{3}{2}} - 6u^{\frac{1}{2}} + 3u^{-\frac{1}{2}}\,du

Agora tente prosseguir a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [INTEGRAL INDEFINIDA] Qual será aSubstituição?

Mensagempor fabriel » Sex Out 05, 2012 13:20

Obrigado Luiz, calculei aqui:
\int_{}^{}{3u}^{\frac{3}{2}}-{6u}^{\frac{1}{2}}+{3u}^{-\frac{1}{2}}du=\frac{6}{5}{u}^{\frac{5}{2}}-\frac{12}{3}{u}^{\frac{3}{2}}+2{u}^{\frac{1}{2}}+C
desse tipo que está ai eu posso simplifica o resultado? Se não fica por isso mesmo:
\frac{6}{5}\sqrt[]{1+{\sqrt[3]{x}}^{5}}-\frac{12}{3}\sqrt[]{1+{\sqrt[3]{x}}^{3}}+2\sqrt[]{1+\sqrt[3]{x}}+C
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL INDEFINIDA] Qual será aSubstituição?

Mensagempor LuizAquino » Sex Out 05, 2012 15:23

fabriel escreveu:Obrigado Luiz, calculei aqui:
\int_{}^{}{3u}^{\frac{3}{2}}-{6u}^{\frac{1}{2}}+{3u}^{-\frac{1}{2}}du=\frac{6}{5}{u}^{\frac{5}{2}}-\frac{12}{3}{u}^{\frac{3}{2}}+2{u}^{\frac{1}{2}}+C


Errado. O correto seria:

\int {3u}^{\frac{3}{2}}-{6u}^{\frac{1}{2}}+{3u}^{-\frac{1}{2}}\,du=\frac{6}{5}{u}^{\frac{5}{2}}-4{u}^{\frac{3}{2}}+6{u}^{\frac{1}{2}}+C

fabriel escreveu:desse tipo que está ai eu posso simplifica o resultado?


Não dá para simplificar muita coisa.

fabriel escreveu:Se não fica por isso mesmo:
\frac{6}{5}\sqrt[]{1+{\sqrt[3]{x}}^{5}}-\frac{12}{3}\sqrt[]{1+{\sqrt[3]{x}}^{3}}+2\sqrt[]{1+\sqrt[3]{x}}+C


Errado. O correto seria:

\frac{6}{5}\sqrt{\left(1+\sqrt[3]{x}\right)^5} - 4\sqrt{\left(1+\sqrt[3]{x}\right)^3} + 6\sqrt{1+\sqrt[3]{x}} + C
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [INTEGRAL INDEFINIDA] Qual será aSubstituição?

Mensagempor fabriel » Sex Out 05, 2012 17:22

ha sim errei nesse detalhe, agora q fui ver:
3\int_{}^{}{u}^{-\frac{1}{2}}du=3\left[{2u}^{\frac{1}{2}}+C1 \right]=6{u}^{\frac{1}{2}}+C1
obrigado de novo!
Tenha um Bom fim de semana!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}