• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Ter Jul 17, 2012 03:18

Determine a equação paramétrica da reta \begin{cases} 2x+y-z=0 \\ x+y+z=1 \end{cases}

Não sei achar, pois não tenho nenhum ponto da reta
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Ter Jul 17, 2012 03:42

Somando as duas equações temos 3x+2y=1, daí y = \frac{1-3x}{2}. Substituindo para z segue z = 2x+y = \frac{4x+1-3x}{2} = \frac{1-x}{2}. Podemos adotar o parâmetro x=t e portanto

r: \begin{cases} x=t \\ y = \frac{1-3t}{2} \\ z = \frac{1-t}{2} \end{cases}.

Sugiro que você estude os conteúdos com o livro escrito pelo Reginaldo Santos, está disponível para download. Você deveria saber que a interseção de dois planos em \mathbb{R}^3, quando não paralelos, é uma reta e assim resolver o sistema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 15:56

Na minha sala esse livro do Reginaldo Santos foi quase 90% que achou dificil de ser compreendido.
Na ocasião acima o z=x+1/2, o correto não seria assim?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 16:05

No gabarito está diferente, pois adotou z=t
e substituindo a equação 1, quando acha o valor de y, quando substituir novamente para encontrar o valor de x, não consegue chegar a um resultado pois terá em uma equação duas incógnitas, sendo elas x e y.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Ter Jul 17, 2012 16:16

A outra recomendação é o livro de geometria analítica por Paulo Boulos. Mais tranquilo que estes dois será quase impossível.

A propósito, sim: z = \frac{4x-3x+1}{2} = \frac{x+1}{2}. Obrigado.

Não entendo o que quis dizer com "substituindo a equação 1" em diante. Para adotar o parâmetro z=t basta escrever x e y em função de z.

Subtraia a primeira da segunda, vem x-2x +y-y +z-(-z) = 1-0 \implies -x+2z=1 \implies x = 2z-1. Voltando na segunda temos

x+y+z = (2z-1)+y+z = 3z-1+y=1 \implies y = 2-3z.

Adote z=t e portanto

\begin{array}{l} x = 2t-1, \\ y=2-3t, \\ z=t. \end{array}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 18:22

Obrigado pela resposta.
:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.