• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Ter Jul 17, 2012 03:18

Determine a equação paramétrica da reta \begin{cases} 2x+y-z=0 \\ x+y+z=1 \end{cases}

Não sei achar, pois não tenho nenhum ponto da reta
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Ter Jul 17, 2012 03:42

Somando as duas equações temos 3x+2y=1, daí y = \frac{1-3x}{2}. Substituindo para z segue z = 2x+y = \frac{4x+1-3x}{2} = \frac{1-x}{2}. Podemos adotar o parâmetro x=t e portanto

r: \begin{cases} x=t \\ y = \frac{1-3t}{2} \\ z = \frac{1-t}{2} \end{cases}.

Sugiro que você estude os conteúdos com o livro escrito pelo Reginaldo Santos, está disponível para download. Você deveria saber que a interseção de dois planos em \mathbb{R}^3, quando não paralelos, é uma reta e assim resolver o sistema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 15:56

Na minha sala esse livro do Reginaldo Santos foi quase 90% que achou dificil de ser compreendido.
Na ocasião acima o z=x+1/2, o correto não seria assim?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 16:05

No gabarito está diferente, pois adotou z=t
e substituindo a equação 1, quando acha o valor de y, quando substituir novamente para encontrar o valor de x, não consegue chegar a um resultado pois terá em uma equação duas incógnitas, sendo elas x e y.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Ter Jul 17, 2012 16:16

A outra recomendação é o livro de geometria analítica por Paulo Boulos. Mais tranquilo que estes dois será quase impossível.

A propósito, sim: z = \frac{4x-3x+1}{2} = \frac{x+1}{2}. Obrigado.

Não entendo o que quis dizer com "substituindo a equação 1" em diante. Para adotar o parâmetro z=t basta escrever x e y em função de z.

Subtraia a primeira da segunda, vem x-2x +y-y +z-(-z) = 1-0 \implies -x+2z=1 \implies x = 2z-1. Voltando na segunda temos

x+y+z = (2z-1)+y+z = 3z-1+y=1 \implies y = 2-3z.

Adote z=t e portanto

\begin{array}{l} x = 2t-1, \\ y=2-3t, \\ z=t. \end{array}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 18:22

Obrigado pela resposta.
:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)