• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inciante em Calculo I [Derivada]

Inciante em Calculo I [Derivada]

Mensagempor rhmgh » Dom Jun 10, 2012 14:53

Bom Dia

Meu Profº passou uma lista de exericios e eu fiquei na duvida na resolução de alguns tem como alguém me ajudar?

os exercicios são

y= x² . (Raiz Quadrada de 9 - 4x²) --- o 9-4x² está tudo dentro da raiz

y= ( x³ - 1) . Raiz Cubica de 1 + 3x --- o 1 + 3x está tudo dentro da raiz

y = (x² - 1) (1 - 2x) (1 - 3x²)

y = cos³ (x/3)

Atc
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor e8group » Dom Jun 10, 2012 15:07

Olá .

recomendo que você assista as aulas de Derivadas do prof.Aquino ,principalmente estes dois videos que vai ajuda-lo a resolver estes exercicios .Observe que você pode utilizar o wolfram alpha ,localizado em http://www.wolframalpha.com/ ...


http://www.youtube.com/watch?v=P4nYv6p8 ... plpp_video
http://www.youtube.com/watch?v=IQitdam5 ... plpp_video


Abraços !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor Jhonata » Dom Jun 10, 2012 15:31

Para esses exercícios(e pra toda sua vida diante do cálculo), é fundamental que estude a regra do produto, a regra do quociente e a regra da cadeia, mas basicamente, são dadas pelas fórmulas abaixo, respectivamente:

Se f(x) e g(x) são diferenciáveis.

f(x)g'(x)+g(x)f'(x)

\frac{g(x)f'(x)-f(x)g'(x)}{g(x)^2}

Se y for diferenciável em x e f(x) for derivável em g(x).

f'(g(x))*g'(x)


Se tiver alguma dúvida relacionado a isso, pergunte... Se eu puder ajudar, ficarei feliz.


.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor rhmgh » Dom Jun 10, 2012 22:51

assisti o video, tenho a tabelinha também, as regras...

mais a minha dificuldade ainda é encaixar os numeros no lugar das letras, eu ainda não to conseguindo identificar o que é o que, não peguei o jeito ainda...alguém tem alguma dica?
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor Jhonata » Dom Jun 10, 2012 22:55

rhmgh escreveu:assisti o video, tenho a tabelinha também, as regras...

mais a minha dificuldade ainda é encaixar os numeros no lugar das letras, eu ainda não to conseguindo identificar o que é o que, não peguei o jeito ainda...alguém tem alguma dica?


Bem, isso você pega com o tempo e claro que tem que ter muita dedicação, portanto, estude.
Você não deve deixar as "letras" amedrontarem você. Seria bom você ver alguns exemplos, prestar atenção neles(por exemplo, os passos até a resposta final) e se possível, tentar refazê-los, utilizar a base que você tem pra seguir adiante também é fundamental...
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor rhmgh » Dom Jun 10, 2012 22:58

Jhonata escreveu:
rhmgh escreveu:assisti o video, tenho a tabelinha também, as regras...

mais a minha dificuldade ainda é encaixar os numeros no lugar das letras, eu ainda não to conseguindo identificar o que é o que, não peguei o jeito ainda...alguém tem alguma dica?


Bem, isso você pega com o tempo e claro que tem que ter muita dedicação, portanto, estude.
Você não deve deixar as "letras" amedrontarem você. Seria bom você ver alguns exemplos, prestar atenção neles(por exemplo, os passos até a resposta final) e se possível, tentar refazê-los, utilizar a base que você tem pra seguir adiante também é fundamental...


você sabe onde eu posso encontrar varios desses exemplos?
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor Jhonata » Dom Jun 10, 2012 23:01

Jhonata escreveu:
rhmgh escreveu:assisti o video, tenho a tabelinha também, as regras...

mais a minha dificuldade ainda é encaixar os numeros no lugar das letras, eu ainda não to conseguindo identificar o que é o que, não peguei o jeito ainda...alguém tem alguma dica?


Bem, isso você pega com o tempo e claro que tem que ter muita dedicação, portanto, estude.
Você não deve deixar as "letras" amedrontarem você. Seria bom você ver alguns exemplos, prestar atenção neles(por exemplo, os passos até a resposta final) e se possível, tentar refazê-los, utilizar a base que você tem pra seguir adiante também é fundamental...


Veja só, essa função que você pegou: y= x² . (Raiz Quadrada de 9 - 4x²), pra facilitar, vamos escrever assim:

y=x^2\sqrt{9-4x^2}, observe que nesse caso, há uma multiplicação entre as funções: x^2 e \sqrt{9-4x^2}, então utilizaremos a regra do produto(verifique as relações que postei antes).

Nesse caso, chamamos f(x)=x^2 e g(x) = \sqrt{9-4x^2}. Tente agora aplicar a fórmula e veja o que consegue.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor Jhonata » Dom Jun 10, 2012 23:05

rhmgh escreveu:
Jhonata escreveu:
rhmgh escreveu:assisti o video, tenho a tabelinha também, as regras...

mais a minha dificuldade ainda é encaixar os numeros no lugar das letras, eu ainda não to conseguindo identificar o que é o que, não peguei o jeito ainda...alguém tem alguma dica?


Bem, isso você pega com o tempo e claro que tem que ter muita dedicação, portanto, estude.
Você não deve deixar as "letras" amedrontarem você. Seria bom você ver alguns exemplos, prestar atenção neles(por exemplo, os passos até a resposta final) e se possível, tentar refazê-los, utilizar a base que você tem pra seguir adiante também é fundamental...


você sabe onde eu posso encontrar varios desses exemplos?


Acho que uma ótima solução, seria estudar com as video aulas que o amigo postou acima, mas segue o link do canal das video aulas pra cálculo I:

http://www.youtube.com/playlist?list=PL ... ature=plcp
ou
http://www.youtube.com/playlist?list=PL ... ature=plcp

Utilizo esses videos como "material" de estudo e me ajudam bastante.
Recomendo o acompanhamento desses videos por um livro, sugiro o James Steward 6a edição, mas na internet você dificilmente encontrará pra baixar, mas encontrará facilmente a 5a edição. O livro contém muitos exemplos com muitas resoluções detalhadas. :)
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Inciante em Calculo I [Derivada]

Mensagempor rhmgh » Dom Jun 10, 2012 23:10

Jhonata escreveu:
rhmgh escreveu:
Jhonata escreveu:
rhmgh escreveu:assisti o video, tenho a tabelinha também, as regras...

mais a minha dificuldade ainda é encaixar os numeros no lugar das letras, eu ainda não to conseguindo identificar o que é o que, não peguei o jeito ainda...alguém tem alguma dica?


Bem, isso você pega com o tempo e claro que tem que ter muita dedicação, portanto, estude.
Você não deve deixar as "letras" amedrontarem você. Seria bom você ver alguns exemplos, prestar atenção neles(por exemplo, os passos até a resposta final) e se possível, tentar refazê-los, utilizar a base que você tem pra seguir adiante também é fundamental...


você sabe onde eu posso encontrar varios desses exemplos?


Acho que uma ótima solução, seria estudar com as video aulas que o amigo postou acima, mas segue o link do canal das video aulas pra cálculo I:

http://www.youtube.com/playlist?list=PL ... ature=plcp
ou
http://www.youtube.com/playlist?list=PL ... ature=plcp

Utilizo esses videos como "material" de estudo e me ajudam bastante.
Recomendo o acompanhamento desses videos por um livro, sugiro o James Steward 6a edição, mas na internet você dificilmente encontrará pra baixar, mas encontrará facilmente a 5a edição. O livro contém muitos exemplos com muitas resoluções detalhadas. :)


Bele, muito obrigado pela força...vo dar uma intensivada ver se eu pego o jeito, encontrei o livro para download 5ª Edição!
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D