por DanielFerreira » Dom Abr 29, 2012 21:06
danjr5 escreveu:Calcule
![\int_{}^{}\int_{B}^{}\frac{\sqrt[3]{y - x}}{1 + y + x} \int_{}^{}\int_{B}^{}\frac{\sqrt[3]{y - x}}{1 + y + x}](/latexrender/pictures/06516d1993a243b24558b3ddcf554128.png)
dx dy onde B é o triângulo de vértices

Aplicando Mudança Linear, ficou:

Jacobiano:

Minha integral ficou assim:
![\int_{0}^{1}\int_{v - 1}^{- v + 1}\frac{\sqrt[3]{u}}{v}.\frac{1}{2} \int_{0}^{1}\int_{v - 1}^{- v + 1}\frac{\sqrt[3]{u}}{v}.\frac{1}{2}](/latexrender/pictures/5b01331f1e3c7696a96f0c999b993d8c.png)
du dv
Resultando em
zero.
Poderiam confirmar se o intervalo está correto?
Desde já agradeço.
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por LuizAquino » Ter Mai 01, 2012 15:44
danjr5 escreveu:danjr5 escreveu:Calcule
![\iint_{B} \frac{\sqrt[3]{y - x}}{1 + y + x} \iint_{B} \frac{\sqrt[3]{y - x}}{1 + y + x}](/latexrender/pictures/cb00d9e3ca29666488b1b6f93fa030e5.png)
dx dy onde B é o triângulo de vértices

Aplicando Mudança Linear, ficou:

Jacobiano:

Nesse caso o Jacobiano é -1/2.
danjr5 escreveu:Minha integral ficou assim:
![\int_{0}^{1}\int_{v - 1}^{- v + 1}\frac{\sqrt[3]{u}}{v}.\frac{1}{2} \int_{0}^{1}\int_{v - 1}^{- v + 1}\frac{\sqrt[3]{u}}{v}.\frac{1}{2}](/latexrender/pictures/5b01331f1e3c7696a96f0c999b993d8c.png)
du dv
Resultando em
zero.
Poderiam confirmar se o intervalo está correto?
Como B é triângulo de vértices (0, 0), (1, 0) e (0, 1), temos que

.
Considerando a substituição u = y - x e v = 1 + y + x, temos que:




Traçando os gráficos no sistema de eixos uv, temos a figura abaixo.

- figura.png (5.04 KiB) Exibido 1716 vezes
Desse modo, temos que:
![\iint_{B} \frac{\sqrt[3]{y - x}}{1 + y + x} \, dx \, dy = \int_{1}^{2}\int_{1-v}^{-1+v} \frac{\sqrt[3]{u}}{2v} \, du \, dv \iint_{B} \frac{\sqrt[3]{y - x}}{1 + y + x} \, dx \, dy = \int_{1}^{2}\int_{1-v}^{-1+v} \frac{\sqrt[3]{u}}{2v} \, du \, dv](/latexrender/pictures/40aa0c1036f063729dd4d3e3cb049ed8.png)
Agora termine o exercício.
Editado pela última vez por
LuizAquino em Ter Mai 01, 2012 15:56, em um total de 1 vez.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por DanielFerreira » Ter Mai 01, 2012 15:51
LuizAquino,
boa tarde!!
Quanto ao Jacobiano, ouvi o professor dizer que deveríamos usar o módulo. Se puder esclarecer serei grato mais uma vez.
Até breve!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por LuizAquino » Ter Mai 01, 2012 15:56
danjr5 escreveu: Quanto ao Jacobiano, ouvi o professor dizer que deveríamos usar o módulo. Se puder esclarecer serei grato mais uma vez.
De fato, devemos usar o módulo do Jacobiano quando vamos substituir na integral.
Nesse caso o Jacobiano é -1/2, portanto na integral iremos colocar |-1/2| = 1/2.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Mudança de Variável
por DanielFerreira » Dom Abr 22, 2012 13:58
- 2 Respostas
- 1491 Exibições
- Última mensagem por DanielFerreira

Ter Abr 24, 2012 20:31
Cálculo: Limites, Derivadas e Integrais
-
- Dúvidas em mudança de variável
por pam_nivens » Sáb Nov 28, 2009 21:26
- 2 Respostas
- 5355 Exibições
- Última mensagem por pam_nivens

Dom Nov 29, 2009 01:37
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variavel na integral
por matmatco » Ter Abr 23, 2013 22:29
- 0 Respostas
- 1052 Exibições
- Última mensagem por matmatco

Ter Abr 23, 2013 22:29
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variável em exercício de integração
por Skyliner » Qua Nov 25, 2009 23:02
- 2 Respostas
- 3360 Exibições
- Última mensagem por Skyliner

Qui Nov 26, 2009 01:08
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Mudança de variável
por VFernandes » Ter Jan 03, 2012 23:47
- 2 Respostas
- 2030 Exibições
- Última mensagem por VFernandes

Qui Jan 05, 2012 23:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.