• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Será que isto tá certo?

Será que isto tá certo?

Mensagempor ricardosanto » Sex Abr 27, 2012 15:06

Imagem
são sei como ele chegou nesse resultado, não era p/ ele fazer a derivada do quociente?
pq que ele fez apenas a regra do tombo?
desde já obrigado
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: Será que isto tá certo?

Mensagempor Russman » Sex Abr 27, 2012 23:46

Aquele termo

\frac{a}{\sqrt[]{{a}^{2}+{b}^{2}}}

é uma constante. Assim a sua função é, na verdade,

f = c . {x}^{6}

e então

f' = 6c . {x}^{5}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Será que isto tá certo?

Mensagempor ricardosanto » Sáb Abr 28, 2012 01:59

haaa
entendías vezes ta na cara e a pessa não ver.
então o b/sqrt(a^2+b^2) também é zero, ficando apenas 6ax^5/sqrt(a^2+b^2)
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: Será que isto tá certo?

Mensagempor Russman » Sáb Abr 28, 2012 02:13

isso aí! (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}