por souzalucasr » Qui Abr 05, 2012 11:36
Olá pessoal,
Fiz uma prova ontem e fiquei em dúvida na seguinte questão:
Calcule o limite a seguir:
![\lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x} \lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x}](/latexrender/pictures/ca45b28898898b7f78ed8763982cd50b.png)
Utilizei a equivalência

, de forma a obter

=

=

cancelando os termos

no denominador e numerador, obtive

Foi exatamente nesse ponto em que "travei". Ao entregar a prova, perguntei ao professor como poderia resolver e ele me disse que seria pela análise do sinal, mas não sei bem o que isso quer dizer e como fazer. Vocês poderiam me ajudar?
Muito obrigado!
Essa é minha primeira postagem aqui
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
por MarceloFantini » Qui Abr 05, 2012 12:30
O limite é com

mesmo? Se já viram limites infinitos, a resposta sai de cara da primeira linha, pois o numerador tende a menos um e o denominador para zero.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por souzalucasr » Qui Abr 05, 2012 13:01
Eu não estou com a prova em mãos, mas tenho 99% de certeza que é x tendendo a 0, pois houve esse comentário do professor quanto ao "estudo do sinal". Eu faltei a essa aula, por isso estou perdido. Além disso, não encontrei nada no livro. Segunda-feira vou só confirmar se é isso mesmo, mas até lá vou tentando resolver.
Obrigado!
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
por LuizAquino » Qui Abr 05, 2012 19:11
souzalucasr escreveu:Calcule o limite a seguir:
![\lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x} \lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x}](/latexrender/pictures/ca45b28898898b7f78ed8763982cd50b.png)
souzalucasr escreveu:Utilizei a equivalência

, de forma a obter

=

=

cancelando os termos

no denominador e numerador, obtive

Foi exatamente nesse ponto em que "travei". Ao entregar a prova, perguntei ao professor como poderia resolver e ele me disse que seria pela análise do sinal, mas não sei bem o que isso quer dizer e como fazer. Vocês poderiam me ajudar?
A dica sobre a "análise do sinal" é devido ao fato desse limite ter como resultado

.
Como já disse o colega
MarceloFantini, analisando a expressão original do limite, note que o numerador tende para -1 e o denominador para 0. Isso já é um indício que temos um limite cujo o resultado é

. Falta agora saber se é

ou

. Para saber disso precisamos analisar o sinal.
Para x próximo de 0, temos que o numerador é negativo (como já vimos, ele tende para -1).
Precisamos agora analisar o sinal do denominador quando x está próximo de 0. Isso significa que precisamos analisar o sinal da função

quando x está próximo de zero. Fazendo o estudo do sinal dessa função polinomial do segundo grau, percebemos que f(x) tende para 0 por valores positivos, quando x tende a 0 pela esquerda. Por outro lado, f(x) tende para 0 por valores negativos, quando x tende a 0 pela direita.
Em resumo:
(i) quando x tende a 0 pela esquerda, o numerador é negativo e o denominador é positivo;
(ii) quando x tende a 0 pela direita, o numerador é negativo e o denominador é negativo;
Conclusão:
![\lim_{x\to 0^-} \frac{\sqrt[3]{x} - 1}{x^2 - x} = -\infty \lim_{x\to 0^-} \frac{\sqrt[3]{x} - 1}{x^2 - x} = -\infty](/latexrender/pictures/cd763d09f9c46589bb78e54b5bf3d3db.png)
![\lim_{x\to 0^+} \frac{\sqrt[3]{x} - 1}{x^2 - x} = +\infty \lim_{x\to 0^+} \frac{\sqrt[3]{x} - 1}{x^2 - x} = +\infty](/latexrender/pictures/ca23a7c9df3111da51374883cda55923.png)
Como esses limites laterais são diferentes, temos que
não existe o limite
![\lim_{x\to 0} \frac{\sqrt[3]{x} - 1}{x^2 - x} \lim_{x\to 0} \frac{\sqrt[3]{x} - 1}{x^2 - x}](/latexrender/pictures/ea17b159bfcabc8a50c0338778963f42.png)
.
souzalucasr escreveu:Eu não estou com a prova em mãos, mas tenho 99% de certeza que é x tendendo a 0, pois houve esse comentário do professor quanto ao "estudo do sinal". Eu faltei a essa aula, por isso estou perdido. Além disso, não encontrei nada no livro.
Eu gostaria de recomendar que você assista a videoaula "05. Cálculo I - Limites Infinitos". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por souzalucasr » Sex Abr 06, 2012 11:50
Muito obrigado, Luiz e Marcelo!
Entendi perfeitamente agora. As aulas do youtube serão muito úteis. Vou continuar resolvendo o máximo de exercícios que puder e, quando tiver alguma dúvida, posto aqui para tentar aprender um pouco mais.
[]s
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- derivada análise de sinal
por JoaoLuiz07 » Seg Fev 08, 2016 16:26
- 1 Respostas
- 1282 Exibições
- Última mensagem por adauto martins

Qua Fev 10, 2016 12:31
Cálculo: Limites, Derivadas e Integrais
-
- limite com sinal infinito
por SILMARAKNETSCH » Sex Nov 09, 2012 16:05
- 4 Respostas
- 2275 Exibições
- Última mensagem por MarceloFantini

Seg Nov 12, 2012 10:57
Cálculo: Limites, Derivadas e Integrais
-
- Empacada por um sinal
por Fernanda Lauton » Sex Jul 02, 2010 10:08
- 5 Respostas
- 2541 Exibições
- Última mensagem por Fernanda Lauton

Sáb Jul 03, 2010 22:28
Logaritmos
-
- Estudo do sinal
por victorleme » Dom Mai 08, 2011 16:33
- 1 Respostas
- 2809 Exibições
- Última mensagem por Molina

Dom Mai 08, 2011 17:08
Polinômios
-
- Função ( Estudo do sinal )
por clara » Dom Jun 21, 2009 20:55
- 1 Respostas
- 5224 Exibições
- Última mensagem por Molina

Seg Jun 22, 2009 12:57
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.